BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 28689121)

  • 1. Young calcareous soil chronosequences as a model for ecological restoration on alkaline mine tailings.
    Cross AT; Lambers H
    Sci Total Environ; 2017 Dec; 607-608():168-175. PubMed ID: 28689121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating rock in surface covers improves the establishment of native pioneer vegetation on alkaline mine tailings.
    Cross AT; Zhong H; Lambers H
    Sci Total Environ; 2021 May; 768():145373. PubMed ID: 33736352
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Initiating pedogenesis of magnetite tailings using Lupinus angustifolius (narrow-leaf lupin) as an ecological engineer to promote native plant establishment.
    Zhong H; Lambers H; Wong WS; Dixon KW; Stevens JC; Cross AT
    Sci Total Environ; 2021 Sep; 788():147622. PubMed ID: 34034171
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extensive review on restoration technologies for mining tailings.
    Sun W; Ji B; Khoso SA; Tang H; Liu R; Wang L; Hu Y
    Environ Sci Pollut Res Int; 2018 Dec; 25(34):33911-33925. PubMed ID: 30324370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pedological characteristics of Mn mine tailings and metal accumulation by native plants.
    Wang X; Liu Y; Zeng G; Chai L; Xiao X; Song X; Min Z
    Chemosphere; 2008 Jul; 72(9):1260-6. PubMed ID: 18555510
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A greenhouse trial to investigate the ameliorative properties of biosolids and plants on physicochemical conditions of iron ore tailings: Implications for an iron ore mine site remediation.
    Cele EN; Maboeta M
    J Environ Manage; 2016 Jan; 165():167-174. PubMed ID: 26433357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Restoration with pioneer plants changes soil properties and remodels the diversity and structure of bacterial communities in rhizosphere and bulk soil of copper mine tailings in Jiangxi Province, China.
    Sun X; Zhou Y; Tan Y; Wu Z; Lu P; Zhang G; Yu F
    Environ Sci Pollut Res Int; 2018 Aug; 25(22):22106-22119. PubMed ID: 29802615
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil-covered strategy for ecological restoration alters the bacterial community structure and predictive energy metabolic functions in mine tailings profiles.
    Li Y; Sun Q; Zhan J; Yang Y; Wang D
    Appl Microbiol Biotechnol; 2017 Mar; 101(6):2549-2561. PubMed ID: 27878335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term passive restoration following fluvial deposition of sulphidic copper tailings: nature filters out the solutions.
    Nikolic N; Böcker R; Nikolic M
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):13672-80. PubMed ID: 26300359
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect of organo-mineral amendments and plant growth-promoting rhizobacteria (PGPR) on the establishment of vegetation cover and amelioration of mine tailings.
    Benidire L; Madline A; Pereira SIA; Castro PML; Boularbah A
    Chemosphere; 2021 Jan; 262():127803. PubMed ID: 32755694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Native plant Maireana brevifolia drives prokaryotic microbial community development in alkaline Fe ore tailings under semi-arid climatic conditions.
    Wu S; You F; Hall M; Huang L
    Sci Total Environ; 2021 Mar; 760():144019. PubMed ID: 33341617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extremely High Phosphate Sorption Capacity in Cu-Pb-Zn Mine Tailings.
    Huang L; Li X; Nguyen TA
    PLoS One; 2015; 10(8):e0135364. PubMed ID: 26295582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecological restoration alters microbial communities in mine tailings profiles.
    Li Y; Jia Z; Sun Q; Zhan J; Yang Y; Wang D
    Sci Rep; 2016 Apr; 6():25193. PubMed ID: 27126064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytostabilisation of severely contaminated mine tailings using halophytes and field addition of organic and inorganic amendments.
    Pardo T; Bernal MP; Clemente R
    Chemosphere; 2017 Jul; 178():556-564. PubMed ID: 28351014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Is rhizosphere remediation sufficient for sustainable revegetation of mine tailings?
    Huang L; Baumgartl T; Mulligan D
    Ann Bot; 2012 Jul; 110(2):223-38. PubMed ID: 22648878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mine tailings composition in a historic site: implications for ecological restoration.
    Courtney R
    Environ Geochem Health; 2013 Feb; 35(1):79-88. PubMed ID: 22699431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amendment-assisted revegetation of mine tailings: improvement of tailings quality and biomass production.
    Al-Lami MK; Oustriere N; Gonzales E; Burken JG
    Int J Phytoremediation; 2019; 21(5):425-434. PubMed ID: 30648418
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ecotoxicity of Mine Tailings: Unrehabilitated Versus Rehabilitated.
    Maboeta MS; Oladipo OG; Botha SM
    Bull Environ Contam Toxicol; 2018 May; 100(5):702-707. PubMed ID: 29536120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field evaluation of the effectiveness of three industrial by-products as organic amendments for phytostabilization of a Pb/Zn mine tailings.
    Yang S; Cao J; Li F; Peng X; Peng Q; Yang Z; Chai L
    Environ Sci Process Impacts; 2016 Jan; 18(1):95-103. PubMed ID: 26611119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogeochemical dynamics of nutrients and rare earth elements (REEs) during natural succession from biocrusts to pioneer plants in REE mine tailings in southern China.
    Guo MN; Zhong X; Liu WS; Wang GB; Chao YQ; Huot H; Qiu RL; Morel JL; Watteau F; Séré G; Tang YT
    Sci Total Environ; 2022 Jul; 828():154361. PubMed ID: 35288140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.