These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 28689218)
41. Effects of 1,25-dihydroxyvitamin D3 in an ovalbumin-induced allergic rhinitis model. Chen B; Qu S; Li M; Ye L; Zhang S; Qin T; Fan H Int Immunopharmacol; 2017 Jun; 47():182-189. PubMed ID: 28412624 [TBL] [Abstract][Full Text] [Related]
42. Effects of Blocking NLRP3 Inflammasome on Type II Innate Lymphoid Cell Response in Allergic Rhinitis. Gong G; Huang P; Yang C; Huang C; Zhang Z; Chen R; Sun T; Yang G Iran J Immunol; 2023 Sep; 20(3):287-302. PubMed ID: 37583131 [TBL] [Abstract][Full Text] [Related]
43. Immune responses to different patterns of exposure to ovalbumin in a mouse model of allergic rhinitis. Liang MJ; Fu QL; Jiang HY; Chen FH; Chen D; Chen DH; Lin ZB; Xu R Eur Arch Otorhinolaryngol; 2016 Nov; 273(11):3783-3788. PubMed ID: 27262883 [TBL] [Abstract][Full Text] [Related]
44. Natural Killer Cell Deficits Aggravate Allergic Rhinosinusitis in a Murine Model. Kim JH; Gong CH; Choi GE; Kim SA; Kim HS; Jang YJ ORL J Otorhinolaryngol Relat Spec; 2016; 78(4):199-207. PubMed ID: 27383429 [TBL] [Abstract][Full Text] [Related]
45. Dexamethasone suppresses allergic rhinitis and amplifies CD4(+) Foxp3(+) regulatory T cells in vitro. Wang W; Jiang T; Zhu Z; Cui J; Zhu L; Ma Z Int Forum Allergy Rhinol; 2015 Oct; 5(10):900-6. PubMed ID: 26086746 [TBL] [Abstract][Full Text] [Related]
46. IL-16 variability and modulation by antiallergic drugs in a murine experimental allergic rhinitis model. Akiyama K; Karaki M; Kobayshi R; Dobashi H; Ishida T; Mori N Int Arch Allergy Immunol; 2009; 149(4):315-22. PubMed ID: 19295235 [TBL] [Abstract][Full Text] [Related]
47. DMBT1 has a protective effect on allergic rhinitis. Zhao Y; Tao Q; Wu J; Liu H Biomed Pharmacother; 2020 Jan; 121():109675. PubMed ID: 31810134 [TBL] [Abstract][Full Text] [Related]
48. Allergen endotoxins induce T-cell-dependent and non-IgE-mediated nasal hypersensitivity in mice. Iwasaki N; Matsushita K; Fukuoka A; Nakahira M; Matsumoto M; Akasaki S; Yasuda K; Shimizu T; Yoshimoto T J Allergy Clin Immunol; 2017 Jan; 139(1):258-268.e10. PubMed ID: 27287257 [TBL] [Abstract][Full Text] [Related]
49. Therapeutic effects of SKF-96365 on murine allergic rhinitis induced by OVA. Ba G; Tang R; Sun X; Li Z; Lin H; Zhang W Int J Immunopathol Pharmacol; 2021; 35():20587384211015054. PubMed ID: 33983057 [TBL] [Abstract][Full Text] [Related]
50. Intranasal administration of CpG oligodeoxynucleotides reduces lower airway inflammation in a murine model of combined allergic rhinitis and asthma syndrome. Li HT; Zhang TT; Chen ZG; Ye J; Liu H; Zou XL; Wang YH; Yang HL Int Immunopharmacol; 2015 Sep; 28(1):390-8. PubMed ID: 26163938 [TBL] [Abstract][Full Text] [Related]
51. Role of Interleukin-17A on the Chemotactic Responses to CCL7 in a Murine Allergic Rhinitis Model. Zhang YL; Han DH; Kim DY; Lee CH; Rhee CS PLoS One; 2017; 12(1):e0169353. PubMed ID: 28046055 [TBL] [Abstract][Full Text] [Related]
52. Honeysuckle extract relieves ovalbumin-induced allergic rhinitis by inhibiting AR-induced inflammation and autoimmunity. Lin B; Cai B; Wang H Biosci Rep; 2019 Jul; 39(7):. PubMed ID: 31308153 [TBL] [Abstract][Full Text] [Related]
53. Desloratadine citrate disodium injection, a potent histamine H(1) receptor antagonist, inhibits chemokine production in ovalbumin-induced allergic rhinitis guinea pig model and histamine-induced human nasal epithelial cells via inhibiting the ERK1/2 and NF-kappa B signal cascades. Chen M; Xu S; Zhou P; He G; Jie Q; Wu Y Eur J Pharmacol; 2015 Nov; 767():98-107. PubMed ID: 26455479 [TBL] [Abstract][Full Text] [Related]
54. Exogenous interleukin-10 alleviates allergic inflammation but inhibits local interleukin-10 expression in a mouse allergic rhinitis model. Wang SB; Deng YQ; Ren J; Xiao BK; Liu Z; Tao ZZ BMC Immunol; 2014 Feb; 15():9. PubMed ID: 24568666 [TBL] [Abstract][Full Text] [Related]
55. The role of hypoxia-inducible factor 1α in allergic rhinitis. Mo JH; Kim JH; Lim DJ; Kim EH Am J Rhinol Allergy; 2014; 28(2):e100-6. PubMed ID: 24717944 [TBL] [Abstract][Full Text] [Related]
56. [Differentiation of naive T cells into Th2 cells induced by nuocyte cells in mice with allergic rhinitis]. Lin L; Dai F; Wei JJ; Chen Z; Tang XY Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi; 2018 Oct; 32(20):1575-1579. PubMed ID: 30400710 [No Abstract] [Full Text] [Related]
57. An essential role for dendritic cells in human and experimental allergic rhinitis. KleinJan A; Willart M; van Rijt LS; Braunstahl GJ; Leman K; Jung S; Hoogsteden HC; Lambrecht BN J Allergy Clin Immunol; 2006 Nov; 118(5):1117-25. PubMed ID: 17088138 [TBL] [Abstract][Full Text] [Related]
58. Symbiotic microbiome Staphylococcus aureus from human nasal mucus modulates IL-33-mediated type 2 immune responses in allergic nasal mucosa. Jeon YJ; Gil CH; Won J; Jo A; Kim HJ BMC Microbiol; 2020 Oct; 20(1):301. PubMed ID: 33028252 [TBL] [Abstract][Full Text] [Related]
59. Upregulation of interleukin-35 subunits in regulatory T cells in a murine model of allergic rhinitis. Shen H; Wang C; Fan E; Li Y; Zhang W; Zhang L ORL J Otorhinolaryngol Relat Spec; 2014; 76(5):237-47. PubMed ID: 25412964 [TBL] [Abstract][Full Text] [Related]
60. Group 2 innate lymphoid cells are increased in nasal polyps in patients with eosinophilic chronic rhinosinusitis. Tojima I; Kouzaki H; Shimizu S; Ogawa T; Arikata M; Kita H; Shimizu T Clin Immunol; 2016 Sep; 170():1-8. PubMed ID: 27422491 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]