BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28689656)

  • 1. Body Temperature Cycles Control Rhythmic Alternative Splicing in Mammals.
    Preußner M; Goldammer G; Neumann A; Haltenhof T; Rautenstrauch P; Müller-McNicoll M; Heyd F
    Mol Cell; 2017 Aug; 67(3):433-446.e4. PubMed ID: 28689656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of cis-acting elements that control oscillating alternative splicing.
    Goldammer G; Neumann A; Strauch M; Müller-McNicoll M; Heyd F; Preußner M
    RNA Biol; 2018; 15(8):1081-1092. PubMed ID: 30200840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rhythmic U2af26 alternative splicing controls PERIOD1 stability and the circadian clock in mice.
    Preußner M; Wilhelmi I; Schultz AS; Finkernagel F; Michel M; Möröy T; Heyd F
    Mol Cell; 2014 May; 54(4):651-62. PubMed ID: 24837677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alternative splicing of U2AF1 reveals a shared repression mechanism for duplicated exons.
    Kralovicova J; Vorechovsky I
    Nucleic Acids Res; 2017 Jan; 45(1):417-434. PubMed ID: 27566151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-controlled Rhythmic Gene Expression in Endothermic Mammals: All Diurnal Rhythms are Equal, but Some are Circadian.
    Preußner M; Heyd F
    Bioessays; 2018 Jul; 40(7):e1700216. PubMed ID: 29869389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alternative splicing coupled mRNA decay shapes the temperature-dependent transcriptome.
    Neumann A; Meinke S; Goldammer G; Strauch M; Schubert D; Timmermann B; Heyd F; Preußner M
    EMBO Rep; 2020 Dec; 21(12):e51369. PubMed ID: 33140569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Global regulation of alternative RNA splicing by the SR-rich protein RBM39.
    Mai S; Qu X; Li P; Ma Q; Cao C; Liu X
    Biochim Biophys Acta; 2016 Aug; 1859(8):1014-24. PubMed ID: 27354116
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Conserved Kinase-Based Body-Temperature Sensor Globally Controls Alternative Splicing and Gene Expression.
    Haltenhof T; Kotte A; De Bortoli F; Schiefer S; Meinke S; Emmerichs AK; Petermann KK; Timmermann B; Imhof P; Franz A; Loll B; Wahl MC; Preußner M; Heyd F
    Mol Cell; 2020 Apr; 78(1):57-69.e4. PubMed ID: 32059760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. TRPV4-dependent induction of a novel mammalian cold-inducible protein SRSF5 as well as CIRP and RBM3.
    Fujita T; Higashitsuji H; Higashitsuji H; Liu Y; Itoh K; Sakurai T; Kojima T; Kandori S; Nishiyama H; Fukumoto M; Fukumoto M; Shibasaki K; Fujita J
    Sci Rep; 2017 May; 7(1):2295. PubMed ID: 28536481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Posttranscriptional mechanisms controlling diurnal gene expression cycles by body temperature rhythms.
    Gotic I; Schibler U
    RNA Biol; 2017 Oct; 14(10):1294-1298. PubMed ID: 28267416
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold-dependent alternative splicing of a Jumonji C domain-containing gene MtJMJC5 in Medicago truncatula.
    Shen Y; Wu X; Liu D; Song S; Liu D; Wang H
    Biochem Biophys Res Commun; 2016 May; 474(2):271-276. PubMed ID: 27086112
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of alternative splicing by the circadian clock and food related cues.
    McGlincy NJ; Valomon A; Chesham JE; Maywood ES; Hastings MH; Ule J
    Genome Biol; 2012 Jun; 13(6):R54. PubMed ID: 22721557
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disrupted light-dark cycle abolishes circadian expression of peripheral clock genes without inducing behavioral arrhythmicity in mice.
    Oishi K; Higo-Yamamoto S; Yamamoto S; Yasumoto Y
    Biochem Biophys Res Commun; 2015 Mar; 458(2):256-61. PubMed ID: 25645021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. HP1 is involved in regulating the global impact of DNA methylation on alternative splicing.
    Yearim A; Gelfman S; Shayevitch R; Melcer S; Glaich O; Mallm JP; Nissim-Rafinia M; Cohen AH; Rippe K; Meshorer E; Ast G
    Cell Rep; 2015 Feb; 10(7):1122-34. PubMed ID: 25704815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ribosome profiling reveals the rhythmic liver translatome and circadian clock regulation by upstream open reading frames.
    Janich P; Arpat AB; Castelo-Szekely V; Lopes M; Gatfield D
    Genome Res; 2015 Dec; 25(12):1848-59. PubMed ID: 26486724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Computational Analysis of Alternative Splicing across Mammalian Tissues Reveals Circadian and Ultradian Rhythms in Splicing Events.
    El-Athman R; Knezevic D; Fuhr L; Relógio A
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31443305
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteopontin-c isoform levels are associated with SR and hnRNP differential expression in ovarian cancer cell lines.
    Marques DS; Grativol J; Alves da Silva Peres R; da Rocha Matos A; Gimba ERP
    Tumour Biol; 2017 Sep; 39(9):1010428317725442. PubMed ID: 28936921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications.
    Pellagatti A; Boultwood J
    Adv Biol Regul; 2017 Jan; 63():59-70. PubMed ID: 27639445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactions of SR45, an SR-like protein, with spliceosomal proteins and an intronic sequence: insights into regulated splicing.
    Day IS; Golovkin M; Palusa SG; Link A; Ali GS; Thomas J; Richardson DN; Reddy AS
    Plant J; 2012 Sep; 71(6):936-47. PubMed ID: 22563826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loss of Pnn expression attenuates expression levels of SR family splicing factors and modulates alternative pre-mRNA splicing in vivo.
    Chiu Y; Ouyang P
    Biochem Biophys Res Commun; 2006 Mar; 341(2):663-71. PubMed ID: 16430868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.