These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28690780)

  • 1. Alpine glacier-fed turbid lakes are discontinuous cold polymictic rather than dimictic.
    Peter H; Sommaruga R
    Inland Waters; 2017 Jan; 7(1):45-54. PubMed ID: 28690780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of invertebrates as indicators of environmental change in alpine rivers and lakes.
    Khamis K; Hannah DM; Brown LE; Tiberti R; Milner AM
    Sci Total Environ; 2014 Sep; 493():1242-54. PubMed ID: 24650750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planktonic events may cause polymictic-dimictic regime shifts in temperate lakes.
    Shatwell T; Adrian R; Kirillin G
    Sci Rep; 2016 Apr; 6():24361. PubMed ID: 27074883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melting Himalayas and mercury export: Results of continuous observations from the Rongbuk Glacier on Mt. Everest and future insights.
    Sun X; Zhang Q; Zhang G; Li M; Li S; Guo J; Dong H; Zhou Y; Kang S; Wang X; Shi J
    Water Res; 2022 Jun; 218():118474. PubMed ID: 35461101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Changes in air temperature, but not in precipitation, determine long-term trends in water chemistry of high mountain lakes of the Alps with and without rock glacier influence.
    Schreder S; Sommaruga R; Psenner R; Chimani B; Ganekind M; Koinig KA
    Sci Total Environ; 2023 Dec; 905():167750. PubMed ID: 37838057
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Difference and cause analysis of water storage changes for glacier-fed and non-glacier-fed lakes on the Tibetan Plateau.
    Qiao B; Zhu L
    Sci Total Environ; 2019 Nov; 693():133399. PubMed ID: 31374510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Meltwater temperature in streams draining Alpine glaciers.
    Williamson RJ; Entwistle NS; Collins DN
    Sci Total Environ; 2019 Mar; 658():777-786. PubMed ID: 30583173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Distribution and UV protection strategies of zooplankton in clear and glacier-fed alpine lakes.
    Tartarotti B; Trattner F; Remias D; Saul N; Steinberg CEW; Sommaruga R
    Sci Rep; 2017 Jul; 7(1):4487. PubMed ID: 28674434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ciliate community structure and interactions within the planktonic food web in two alpine lakes of contrasting transparency.
    Kammerlander B; Koinig KA; Rott E; Sommaruga R; Tartarotti B; Trattner F; Sonntag B
    Freshw Biol; 2016 Nov; 61(11):1950-1965. PubMed ID: 27840457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Are viruses important in the plankton of highly turbid glacier-fed lakes?
    Drewes F; Peter H; Sommaruga R
    Sci Rep; 2016 Apr; 6():24608. PubMed ID: 27094854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glacier melt-down changes habitat characteristics and unique microbial community composition and physiology in alpine lake sediments.
    Kleinteich J; Hanselmann K; Hildebrand F; Kappler A; Zarfl C
    FEMS Microbiol Ecol; 2022 Jul; 98(7):. PubMed ID: 35749563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shifts in diversity and function of lake bacterial communities upon glacier retreat.
    Peter H; Sommaruga R
    ISME J; 2016 Jul; 10(7):1545-54. PubMed ID: 26771929
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrological and depositional processes associated with recent glacier recession in Yanamarey catchment, Cordillera Blanca (Peru).
    López-Moreno JI; Valero-Garcés B; Mark B; Condom T; Revuelto J; Azorín-Molina C; Bazo J; Frugone M; Vicente-Serrano SM; Alejo-Cochachin J
    Sci Total Environ; 2017 Feb; 579():272-282. PubMed ID: 27890413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Release of PCBs from Silvretta glacier (Switzerland) investigated in lake sediments and meltwater.
    Pavlova PA; Zennegg M; Anselmetti FS; Schmid P; Bogdal C; Steinlin C; Jäggi M; Schwikowski M
    Environ Sci Pollut Res Int; 2016 Jun; 23(11):10308-10316. PubMed ID: 26638969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of glacial lakes to glacier and climate changes in the western Nyainqentanglha range.
    Luo W; Zhang G; Chen W; Xu F
    Sci Total Environ; 2020 Sep; 735():139607. PubMed ID: 32485459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Habitat modulates population-level responses of freshwater salmon growth to a century of change in climate and competition.
    Price MHH; Moore JW; McKinnell S; Connors BM; Reynolds JD
    Glob Chang Biol; 2024 Jan; 30(1):e17095. PubMed ID: 38273478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring the Spatiotemporal Difference in Glacier Elevation on Bogda Mountain from 2000 to 2017.
    Du W; Shi N; Xu L; Zhang S; Ma D; Wang S
    Int J Environ Res Public Health; 2021 Jun; 18(12):. PubMed ID: 34204658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trophic state (TSI
    Sługocki Ł; Czerniawski R
    PeerJ; 2018; 6():e5731. PubMed ID: 30310753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Climate-induced glacier and snow loss imperils alpine stream insects.
    Giersch JJ; Hotaling S; Kovach RP; Jones LA; Muhlfeld CC
    Glob Chang Biol; 2017 Jul; 23(7):2577-2589. PubMed ID: 27862701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. When glaciers and ice sheets melt: consequences for planktonic organisms.
    Sommaruga R
    J Plankton Res; 2015 May; 37(3):509-518. PubMed ID: 26869738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.