These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 28691104)

  • 1. Genetic and epigenetic modifications in the pathogenesis of diabetic retinopathy: a molecular link to regulate gene expression.
    Pradhan P; Upadhyay N; Tiwari A; Singh LP
    New Front Ophthalmol; 2016; 2(5):192-204. PubMed ID: 28691104
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epigenetic modifications and potential new treatment targets in diabetic retinopathy.
    Perrone L; Matrone C; Singh LP
    J Ophthalmol; 2014; 2014():789120. PubMed ID: 25165577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thioredoxin Interacting Protein (TXNIP) and Pathogenesis of Diabetic Retinopathy.
    Singh LP
    J Clin Exp Ophthalmol; 2013 Aug; 4():. PubMed ID: 24353900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epigenetic mechanisms in diabetic complications and metabolic memory.
    Reddy MA; Zhang E; Natarajan R
    Diabetologia; 2015 Mar; 58(3):443-55. PubMed ID: 25481708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thioredoxin interacting protein (TXNIP) induces inflammation through chromatin modification in retinal capillary endothelial cells under diabetic conditions.
    Perrone L; Devi TS; Hosoya K; Terasaki T; Singh LP
    J Cell Physiol; 2009 Oct; 221(1):262-72. PubMed ID: 19562690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epigenetic modifications in metabolic memory: What are the memories, and can we erase them?
    Chen Z; Natarajan R
    Am J Physiol Cell Physiol; 2022 Aug; 323(2):C570-C582. PubMed ID: 35785987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potentials of Gene Therapy for Diabetic Retinopathy: The Use of Nucleic Acid Constructs Containing a TXNIP Promoter.
    Lalit PS; Thangal Y; Fayi Y; Takhellambam SD
    Open Access J Ophthalmol; 2018; 3(2):. PubMed ID: 31106306
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diabetic retinopathy, metabolic memory and epigenetic modifications.
    Kowluru RA
    Vision Res; 2017 Oct; 139():30-38. PubMed ID: 28700951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of histone modification and DNA methylation in signaling pathways involved in diabetic retinopathy.
    Shafabakhsh R; Aghadavod E; Ghayour-Mobarhan M; Ferns G; Asemi Z
    J Cell Physiol; 2019 Jun; 234(6):7839-7846. PubMed ID: 30515789
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Epigenetic modifications and diabetic nephropathy.
    Reddy MA; Park JT; Natarajan R
    Kidney Res Clin Pract; 2012 Sep; 31(3):139-50. PubMed ID: 26894019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis.
    Padovani-Claudio DA; Ramos CJ; Capozzi ME; Penn JS
    Prog Retin Eye Res; 2023 May; 94():101151. PubMed ID: 37028118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epigenetic control of early neurodegenerative events in diabetic retinopathy by the histone deacetylase SIRT6.
    Zorrilla-Zubilete MA; Yeste A; Quintana FJ; Toiber D; Mostoslavsky R; Silberman DM
    J Neurochem; 2018 Jan; 144(2):128-138. PubMed ID: 29049850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic Mechanisms in Diabetic Vascular Complications and Metabolic Memory: The 2020 Edwin Bierman Award Lecture.
    Natarajan R
    Diabetes; 2021 Feb; 70(2):328-337. PubMed ID: 33472942
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diabetic Retinopathy: Mitochondria Caught in a Muddle of Homocysteine.
    Kowluru RA
    J Clin Med; 2020 Sep; 9(9):. PubMed ID: 32961662
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting epigenetic modifications as a potential therapeutic option for diabetic retinopathy.
    Kumari N; Karmakar A; Ganesan SK
    J Cell Physiol; 2020 Mar; 235(3):1933-1947. PubMed ID: 31531859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging Evidence of Epigenetic Modifications in Vascular Complication of Diabetes.
    Khullar M; Cheema BS; Raut SK
    Front Endocrinol (Lausanne); 2017; 8():237. PubMed ID: 29085333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene and Tissue Engineering For the Treatment of Diabetes and Its Retinal Complications: The Use of Nucleic Acid Constructs Bearing A
    Singh LP
    Curr Trends Biomed Eng Biosci; 2018; 13(4):. PubMed ID: 31355358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential Combination Drug Therapy to Prevent Redox Stress and Mitophagy Dysregulation in Retinal Müller Cells under High Glucose Conditions: Implications for Diabetic Retinopathy.
    Singh LP; Devi TS
    Diseases; 2021 Dec; 9(4):. PubMed ID: 34940029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Cell biology of intraocular vascular diseases].
    Ishibashi T
    Nippon Ganka Gakkai Zasshi; 1999 Dec; 103(12):923-47. PubMed ID: 10643294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epigenetic modifications of Nrf2-mediated glutamate-cysteine ligase: implications for the development of diabetic retinopathy and the metabolic memory phenomenon associated with its continued progression.
    Mishra M; Zhong Q; Kowluru RA
    Free Radic Biol Med; 2014 Oct; 75():129-39. PubMed ID: 25016074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.