These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 28691160)

  • 1. The CYCLOIDEA-RADIALIS module regulates petal shape and pigmentation, leading to bilateral corolla symmetry in Torenia fournieri (Linderniaceae).
    Su S; Xiao W; Guo W; Yao X; Xiao J; Ye Z; Wang N; Jiao K; Lei M; Peng Q; Hu X; Huang X; Luo D
    New Phytol; 2017 Sep; 215(4):1582-1593. PubMed ID: 28691160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repeated and diverse losses of corolla bilateral symmetry in the Lamiaceae.
    Zhong J; Preston JC; Hileman LC; Kellogg EA
    Ann Bot; 2017 May; 119(7):1211-1223. PubMed ID: 28334152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stepwise evolution of corolla symmetry in CYCLOIDEA2-like and RADIALIS-like gene expression patterns in Lamiales.
    Zhong J; Kellogg EA
    Am J Bot; 2015 Aug; 102(8):1260-7. PubMed ID: 26290549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. R2R3-MYB genes control petal pigmentation patterning in Clarkia gracilis ssp. sonomensis (Onagraceae).
    Lin RC; Rausher MD
    New Phytol; 2021 Jan; 229(2):1147-1162. PubMed ID: 32880946
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A homolog of the ALOG family controls corolla tube differentiation in
    Xiao W; Su S; Higashiyama T; Luo D
    Development; 2019 Aug; 146(16):. PubMed ID: 31391196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies.
    Preston JC; Kost MA; Hileman LC
    New Phytol; 2009; 182(3):751-762. PubMed ID: 19291006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular characterization of mutations in white-flowered torenia plants.
    Nishihara M; Yamada E; Saito M; Fujita K; Takahashi H; Nakatsuka T
    BMC Plant Biol; 2014 Apr; 14():86. PubMed ID: 24694353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel R2R3-MYB from grape hyacinth, MaMybA, which is different from MaAN2, confers intense and magenta anthocyanin pigmentation in tobacco.
    Chen K; Du L; Liu H; Liu Y
    BMC Plant Biol; 2019 Sep; 19(1):390. PubMed ID: 31500571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation.
    Morita Y; Takagi K; Fukuchi-Mizutani M; Ishiguro K; Tanaka Y; Nitasaka E; Nakayama M; Saito N; Kagami T; Hoshino A; Iida S
    Plant J; 2014 Apr; 78(2):294-304. PubMed ID: 24517863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of ALOG gene family suggests various roles in establishing plant architecture of Torenia fournieri.
    Xiao W; Ye Z; Yao X; He L; Lei Y; Luo D; Su S
    BMC Plant Biol; 2018 Sep; 18(1):204. PubMed ID: 30236061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Duplications and expression of DIVARICATA-like genes in dipsacales.
    Howarth DG; Donoghue MJ
    Mol Biol Evol; 2009 Jun; 26(6):1245-58. PubMed ID: 19289599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distinct Regulatory Changes Underlying Differential Expression of TEOSINTE BRANCHED1-CYCLOIDEA-PROLIFERATING CELL FACTOR Genes Associated with Petal Variations in Zygomorphic Flowers of Petrocosmea spp. of the Family Gesneriaceae.
    Yang X; Zhao XG; Li CQ; Liu J; Qiu ZJ; Dong Y; Wang YZ
    Plant Physiol; 2015 Nov; 169(3):2138-51. PubMed ID: 26351309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chimeric repressor of petunia PH4 R2R3-MYB family transcription factor generates margined flowers in torenia.
    Kasajima I; Sasaki K
    Plant Signal Behav; 2016 May; 11(5):e1177693. PubMed ID: 27089475
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ancient Gene Duplications, Rather Than Polyploidization, Facilitate Diversification of Petal Pigmentation Patterns in Clarkia gracilis (Onagraceae).
    Lin RC; Rausher MD
    Mol Biol Evol; 2021 Dec; 38(12):5528-5538. PubMed ID: 34398232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CYCLOIDEA paralogs function partially redundantly to specify dorsal flower development in Mimulus lewisii.
    Dunivant TS; Singh V; Livingston KE; Ross JD; Hileman LC
    Am J Bot; 2024 Feb; 111(2):e16271. PubMed ID: 38265745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diversification of CYCLOIDEA expression in the evolution of bilateral flower symmetry in Caprifoliaceae and Lonicera (Dipsacales).
    Howarth DG; Martins T; Chimney E; Donoghue MJ
    Ann Bot; 2011 Jun; 107(9):1521-32. PubMed ID: 21478175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dorsoventrally asymmetric expression of miR319/TCP generates dorsal-specific venation patterning in petunia corolla tube.
    Zhang B; Qin X; Han Y; Li M; Guo Y
    J Exp Bot; 2024 Jun; 75(11):3401-3411. PubMed ID: 38492236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection favors loss of floral pigmentation in a highly selfing morning glory.
    Duncan TM; Rausher MD
    PLoS One; 2020; 15(4):e0231263. PubMed ID: 32282839
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of Floret Symmetry by RAY3, SvDIV1B, and SvRAD in the Capitulum of Senecio vulgaris.
    Garcês HM; Spencer VM; Kim M
    Plant Physiol; 2016 Jul; 171(3):2055-68. PubMed ID: 27208229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Elaboration of bilateral symmetry across Knautia macedonica capitula related to changes in ventral petal expression of CYCLOIDEA-like genes.
    Berger BA; Thompson V; Lim A; Ricigliano V; Howarth DG
    Evodevo; 2016; 7():8. PubMed ID: 27042288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.