BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 28691197)

  • 1. Loss of Dcc in the spinal cord is sufficient to cause a deficit in lateralized motor control and the switch to a hopping gait.
    Peng J; Ferent J; Li Q; Liu M; Da Silva RV; Zeilhofer HU; Kania A; Zhang Y; Charron F
    Dev Dyn; 2018 Apr; 247(4):620-629. PubMed ID: 28691197
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heterozygous
    Thiry L; Lemaire C; Rastqar A; Lemieux M; Peng J; Ferent J; Roussel M; Beaumont E; Fawcett JP; Brownstone RM; Charron F; Bretzner F
    eNeuro; 2022; 9(2):. PubMed ID: 35115383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modelling genetic reorganization in the mouse spinal cord affecting left-right coordination during locomotion.
    Rybak IA; Shevtsova NA; Kiehn O
    J Physiol; 2013 Nov; 591(22):5491-508. PubMed ID: 24081162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Non cell-autonomous role of DCC in the guidance of the corticospinal tract at the midline.
    Welniarz Q; Morel MP; Pourchet O; Gallea C; Lamy JC; Cincotta M; Doulazmi M; Belle M; Méneret A; Trouillard O; Ruiz M; Brochard V; Meunier S; Trembleau A; Vidailhet M; Chédotal A; Dusart I; Roze E
    Sci Rep; 2017 Mar; 7(1):410. PubMed ID: 28341853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NCK is critical for the development of deleted in colorectal cancer (DCC) sensitive spinal circuits.
    Lane C; Qi J; Fawcett JP
    J Neurochem; 2015 Sep; 134(6):1008-14. PubMed ID: 25913325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DCC mediated axon guidance of spinal interneurons is essential for normal locomotor central pattern generator function.
    Rabe Bernhardt N; Memic F; Gezelius H; Thiebes AL; Vallstedt A; Kullander K
    Dev Biol; 2012 Jun; 366(2):279-89. PubMed ID: 22521513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One hand clapping: lateralization of motor control.
    Welniarz Q; Dusart I; Gallea C; Roze E
    Front Neuroanat; 2015; 9():75. PubMed ID: 26082690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetics of mirror movements identifies a multifunctional complex required for Netrin-1 guidance and lateralization of motor control.
    Schlienger S; Yam PT; Balekoglu N; Ducuing H; Michaud JF; Makihara S; Kramer DK; Chen B; Fasano A; Berardelli A; Hamdan FF; Rouleau GA; Srour M; Charron F
    Sci Adv; 2023 May; 9(19):eadd5501. PubMed ID: 37172092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mirror movement-like defects in startle behavior of zebrafish dcc mutants are caused by aberrant midline guidance of identified descending hindbrain neurons.
    Jain RA; Bell H; Lim A; Chien CB; Granato M
    J Neurosci; 2014 Feb; 34(8):2898-909. PubMed ID: 24553931
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Bernhardt N; Memic F; Velica A; Tran MA; Vieillard J; Sayyab S; Chersa T; Andersson L; Whelan PJ; Boije H; Kullander K
    eNeuro; 2022; 9(2):. PubMed ID: 35210288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel DCC variants in congenital mirror movements and evaluation of disease-associated missense variants.
    Bierhals T; Korenke GC; Baethmann M; Marín LL; Staudt M; Kutsche K
    Eur J Med Genet; 2018 Jun; 61(6):329-334. PubMed ID: 29366874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural function in DCC mutation carriers with and without mirror movements.
    Vosberg DE; Beaulé V; Torres-Berrío A; Cooke D; Chalupa A; Jaworska N; Cox SML; Larcher K; Zhang Y; Allard D; Durand F; Dagher A; Benkelfat C; Srour M; Tampieri D; La Piana R; Joober R; Lepore F; Rouleau G; Pascual-Leone A; Fox MD; Flores C; Leyton M; Théoret H
    Ann Neurol; 2019 Mar; 85(3):433-442. PubMed ID: 30666715
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dorsally derived spinal interneurons in locomotor circuits.
    Vallstedt A; Kullander K
    Ann N Y Acad Sci; 2013 Mar; 1279():32-42. PubMed ID: 23531000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NOVA regulates Dcc alternative splicing during neuronal migration and axon guidance in the spinal cord.
    Leggere JC; Saito Y; Darnell RB; Tessier-Lavigne M; Junge HJ; Chen Z
    Elife; 2016 May; 5():. PubMed ID: 27223328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Change in the balance of excitatory and inhibitory midline fiber crossing as an explanation for the hopping phenotype in EphA4 knockout mice.
    Restrepo CE; Margaryan G; Borgius L; Lundfald L; Sargsyan D; Kiehn O
    Eur J Neurosci; 2011 Oct; 34(7):1102-12. PubMed ID: 21899605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ephrin-B3 is the midline barrier that prevents corticospinal tract axons from recrossing, allowing for unilateral motor control.
    Kullander K; Croll SD; Zimmer M; Pan L; McClain J; Hughes V; Zabski S; DeChiara TM; Klein R; Yancopoulos GD; Gale NW
    Genes Dev; 2001 Apr; 15(7):877-88. PubMed ID: 11297511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central control of interlimb coordination and speed-dependent gait expression in quadrupeds.
    Danner SM; Wilshin SD; Shevtsova NA; Rybak IA
    J Physiol; 2016 Dec; 594(23):6947-6967. PubMed ID: 27633893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms regulating axon responsiveness at the midline.
    Gorla M; Bashaw GJ
    Dev Biol; 2020 Oct; 466(1-2):12-21. PubMed ID: 32818516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of the corticospinal fiber integrity in mirror movement disorder.
    Solmaz B; Özyurt MG; Ata DB; Akçimen F; Shabsog M; Türker KS; Dalçik H; Algin O; Başak AN; Özgür M; Çavdar S
    J Clin Neurosci; 2018 Aug; 54():69-76. PubMed ID: 29907388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organization of left-right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling.
    Shevtsova NA; Talpalar AE; Markin SN; Harris-Warrick RM; Kiehn O; Rybak IA
    J Physiol; 2015 Jun; 593(11):2403-26. PubMed ID: 25820677
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.