BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

462 related articles for article (PubMed ID: 28691252)

  • 21. Hyperactive antifreeze protein from fish contains multiple ice-binding sites.
    Graham LA; Marshall CB; Lin FH; Campbell RL; Davies PL
    Biochemistry; 2008 Feb; 47(7):2051-63. PubMed ID: 18225917
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase.
    Choi YG; Park CJ; Kim HE; Seo YJ; Lee AR; Choi SR; Lee SS; Lee JH
    J Biomol NMR; 2015 Feb; 61(2):137-50. PubMed ID: 25575834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ice restructuring inhibition activities in antifreeze proteins with distinct differences in thermal hysteresis.
    Yu SO; Brown A; Middleton AJ; Tomczak MM; Walker VK; Davies PL
    Cryobiology; 2010 Dec; 61(3):327-34. PubMed ID: 20977900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The ice-binding site of antifreeze protein irreversibly binds to cell surface for its hypothermic protective function.
    Yang Y; Yamauchi A; Tsuda S; Kuramochi M; Mio K; Sasaki YC; Arai T
    Biochem Biophys Res Commun; 2023 Nov; 682():343-348. PubMed ID: 37837755
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cryo-protective effect of an ice-binding protein derived from Antarctic bacteria.
    Mangiagalli M; Bar-Dolev M; Tedesco P; Natalello A; Kaleda A; Brocca S; de Pascale D; Pucciarelli S; Miceli C; Braslavsky I; Lotti M
    FEBS J; 2017 Jan; 284(1):163-177. PubMed ID: 27860412
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ice crystal recrystallization inhibition of type I antifreeze protein, type III antifreeze protein, and antifreeze glycoprotein: effects of AF(G)Ps concentration and heat treatment.
    Ma Q; Shibata M; Hagiwara T
    Biosci Biotechnol Biochem; 2022 Apr; 86(5):635-645. PubMed ID: 35134820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of antifreeze proteins investigated via the site-directed spin labeling technique.
    Flores A; Quon JC; Perez AF; Ba Y
    Eur Biophys J; 2018 Sep; 47(6):611-630. PubMed ID: 29487966
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solution conformation of C-linked antifreeze glycoprotein analogues and modulation of ice recrystallization.
    Tam RY; Rowley CN; Petrov I; Zhang T; Afagh NA; Woo TK; Ben RN
    J Am Chem Soc; 2009 Nov; 131(43):15745-53. PubMed ID: 19824639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ice-binding proteins that accumulate on different ice crystal planes produce distinct thermal hysteresis dynamics.
    Drori R; Celik Y; Davies PL; Braslavsky I
    J R Soc Interface; 2014 Sep; 11(98):20140526. PubMed ID: 25008081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Animal ice-binding (antifreeze) proteins and glycolipids: an overview with emphasis on physiological function.
    Duman JG
    J Exp Biol; 2015 Jun; 218(Pt 12):1846-55. PubMed ID: 26085662
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High water mobility on the ice-binding surface of a hyperactive antifreeze protein.
    Modig K; Qvist J; Marshall CB; Davies PL; Halle B
    Phys Chem Chem Phys; 2010 Sep; 12(35):10189-97. PubMed ID: 20668761
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dendrimer-Linked Antifreeze Proteins Have Superior Activity and Thermal Recovery.
    Stevens CA; Drori R; Zalis S; Braslavsky I; Davies PL
    Bioconjug Chem; 2015 Sep; 26(9):1908-15. PubMed ID: 26267368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Properties, potentials, and prospects of antifreeze proteins.
    Venketesh S; Dayananda C
    Crit Rev Biotechnol; 2008; 28(1):57-82. PubMed ID: 18322856
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antifreeze proteins govern the precipitation of trehalose in a freezing-avoiding insect at low temperature.
    Wen X; Wang S; Duman JG; Arifin JF; Juwita V; Goddard WA; Rios A; Liu F; Kim SK; Abrol R; DeVries AL; Henling LM
    Proc Natl Acad Sci U S A; 2016 Jun; 113(24):6683-8. PubMed ID: 27226297
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of Tenebrio Molitor Antifreeze Protein with Ice Crystal: Insights from Molecular Dynamics Simulations.
    Ramya L; Ramakrishnan V
    Mol Inform; 2016 Jul; 35(6-7):268-77. PubMed ID: 27492241
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Computational Study of Differences between Antifreeze Activity of Type-III Antifreeze Protein from Ocean Pout and Its Mutant.
    Kumari S; Muthachikavil AV; Tiwari JK; Punnathanam SN
    Langmuir; 2020 Mar; 36(9):2439-2448. PubMed ID: 32069407
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Antifreeze Proteins and Their Practical Utilization in Industry, Medicine, and Agriculture.
    Eskandari A; Leow TC; Rahman MBA; Oslan SN
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33317024
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structure and Dynamics of Antifreeze Protein--Model Membrane Interactions: A Combined Spectroscopic and Molecular Dynamics Study.
    Kar RK; Mroue KH; Kumar D; Tejo BA; Bhunia A
    J Phys Chem B; 2016 Feb; 120(5):902-14. PubMed ID: 26785292
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
    Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV
    J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The mechanism by which fish antifreeze proteins cause thermal hysteresis.
    Kristiansen E; Zachariassen KE
    Cryobiology; 2005 Dec; 51(3):262-80. PubMed ID: 16140290
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.