These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 28691487)

  • 1. Low-Temperature Ohmic Contact to Monolayer MoS
    Cui X; Shih EM; Jauregui LA; Chae SH; Kim YD; Li B; Seo D; Pistunova K; Yin J; Park JH; Choi HJ; Lee YH; Watanabe K; Taniguchi T; Kim P; Dean CR; Hone JC
    Nano Lett; 2017 Aug; 17(8):4781-4786. PubMed ID: 28691487
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron Excess Doping and Effective Schottky Barrier Reduction on the MoS
    Joo MK; Moon BH; Ji H; Han GH; Kim H; Lee G; Lim SC; Suh D; Lee YH
    Nano Lett; 2016 Oct; 16(10):6383-6389. PubMed ID: 27649454
    [TBL] [Abstract][Full Text] [Related]  

  • 3. van der Waals Bonded Co/h-BN Contacts to Ultrathin Black Phosphorus Devices.
    Avsar A; Tan JY; Luo X; Khoo KH; Yeo Y; Watanabe K; Taniguchi T; Quek SY; Özyilmaz B
    Nano Lett; 2017 Sep; 17(9):5361-5367. PubMed ID: 28792227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors.
    Wang Y; Kim JC; Wu RJ; Martinez J; Song X; Yang J; Zhao F; Mkhoyan A; Jeong HY; Chhowalla M
    Nature; 2019 Apr; 568(7750):70-74. PubMed ID: 30918403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The modulation of Schottky barriers of metal-MoS2 contacts via BN-MoS2 heterostructures.
    Su J; Feng L; Zhang Y; Liu Z
    Phys Chem Chem Phys; 2016 Jun; 18(25):16882-9. PubMed ID: 27282959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward barrier free contact to molybdenum disulfide using graphene electrodes.
    Liu Y; Wu H; Cheng HC; Yang S; Zhu E; He Q; Ding M; Li D; Guo J; Weiss NO; Huang Y; Duan X
    Nano Lett; 2015 May; 15(5):3030-4. PubMed ID: 25879371
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Chemical Vapor Deposition Growth and Band-Gap Characterization of MoS
    Zhang Z; Ji X; Shi J; Zhou X; Zhang S; Hou Y; Qi Y; Fang Q; Ji Q; Zhang Y; Hong M; Yang P; Liu X; Zhang Q; Liao L; Jin C; Liu Z; Zhang Y
    ACS Nano; 2017 Apr; 11(4):4328-4336. PubMed ID: 28333441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonant Tunneling Due to van der Waals Quantum-Well States of Few-Layer WSe
    Takeyama K; Moriya R; Okazaki S; Zhang Y; Masubuchi S; Watanabe K; Taniguchi T; Sasagawa T; Machida T
    Nano Lett; 2021 May; 21(9):3929-3934. PubMed ID: 33900095
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Mobility MoS
    Wang J; Yao Q; Huang CW; Zou X; Liao L; Chen S; Fan Z; Zhang K; Wu W; Xiao X; Jiang C; Wu WW
    Adv Mater; 2016 Oct; 28(37):8302-8308. PubMed ID: 27387603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. All Chemical Vapor Deposition Growth of MoS2:h-BN Vertical van der Waals Heterostructures.
    Wang S; Wang X; Warner JH
    ACS Nano; 2015 May; 9(5):5246-54. PubMed ID: 25895108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Electron and Hole Injection Enabled by Atomically Thin Tunneling Layer for Improved Contact Resistance and Dual Channel Transport in MoS
    Khan MA; Rathi S; Lee C; Lim D; Kim Y; Yun SJ; Youn DH; Kim GH
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23961-23967. PubMed ID: 29938500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new insight for ohmic contacts to MoS
    Wang Q; Deng B; Shi X
    Phys Chem Chem Phys; 2017 Oct; 19(38):26151-26157. PubMed ID: 28930321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diode-Like Selective Enhancement of Carrier Transport through Metal-Semiconductor Interface Decorated by Monolayer Boron Nitride.
    Jaiswal HN; Liu M; Shahi S; Wei S; Lee J; Chakravarty A; Guo Y; Wang R; Lee JM; Chang C; Fu Y; Dixit R; Liu X; Yang C; Yao F; Li H
    Adv Mater; 2020 Sep; 32(36):e2002716. PubMed ID: 32725788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform.
    Cui X; Lee GH; Kim YD; Arefe G; Huang PY; Lee CH; Chenet DA; Zhang X; Wang L; Ye F; Pizzocchero F; Jessen BS; Watanabe K; Taniguchi T; Muller DA; Low T; Kim P; Hone J
    Nat Nanotechnol; 2015 Jun; 10(6):534-40. PubMed ID: 25915194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controllable Schottky barriers between MoS2 and permalloy.
    Wang W; Liu Y; Tang L; Jin Y; Zhao T; Xiu F
    Sci Rep; 2014 Nov; 4():6928. PubMed ID: 25370911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monolayer MoS
    Gupta S; Rortais F; Ohshima R; Ando Y; Endo T; Miyata Y; Shiraishi M
    Sci Rep; 2019 Nov; 9(1):17032. PubMed ID: 31745127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Approaching Ohmic Contacts for Ideal Monolayer MoS
    Xiao J; Chen K; Zhang X; Liu X; Yu H; Gao L; Hong M; Gu L; Zhang Z; Zhang Y
    Small Methods; 2023 Nov; 7(11):e2300611. PubMed ID: 37551044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Contact Properties of Monolayer and Multilayer MoS
    Pei X; Hu X; Xu T; Sun L
    Nanomaterials (Basel); 2024 Jun; 14(13):. PubMed ID: 38998679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface functional group modification induced partial Fermi level pinning and ohmic contact at borophene-MoS
    Zou D; Zhao W; Xie W; Xu Y; Li X; Yang C
    Phys Chem Chem Phys; 2020 Sep; 22(34):19202-19212. PubMed ID: 32812593
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.