These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28691770)

  • 1. Influence of the Water Phase State on the Thermodynamics of Aqueous-Phase Reforming for Hydrogen Production.
    Ripken RM; Meuldijk J; Gardeniers JGE; Le Gac S
    ChemSusChem; 2017 Dec; 10(24):4909-4913. PubMed ID: 28691770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.
    Cortright RD; Davda RR; Dumesic JA
    Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of acetone-butanol-ethanol-water mixture obtained from biomass fermentation as renewable feedstock for hydrogen production via steam reforming: Thermodynamic and energy analyses.
    Kumar B; Kumar S; Sinha S; Kumar S
    Bioresour Technol; 2018 Aug; 261():385-393. PubMed ID: 29684868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon-coated ceramic membrane reactor for the production of hydrogen by aqueous-phase reforming of sorbitol.
    Neira D'Angelo MF; Ordomsky V; Schouten JC; van der Schaaf J; Nijhuis TA
    ChemSusChem; 2014 Jul; 7(7):2007-15. PubMed ID: 24989121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen production through aqueous-phase reforming of ethylene glycol in a washcoated microchannel.
    D'Angelo MF; Ordomsky V; Paunovic V; van der Schaaf J; Schouten JC; Nijhuis TA
    ChemSusChem; 2013 Sep; 6(9):1708-16. PubMed ID: 23592593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen production via aqueous-phase reforming for high-temperature proton exchange membrane fuel cells - a review.
    Lakhtaria P; Ribeirinha P; Huhtinen W; Viik S; Sousa J; Mendes A
    Open Res Eur; 2021; 1():81. PubMed ID: 37645145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steam Reforming of Model Bio-Oil Aqueous Fraction Using Ni-(Cu, Co, Cr)/SBA-15 Catalysts.
    Calles JA; Carrero A; Vizcaíno AJ; García-Moreno L; Megía PJ
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30691053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aqueous-phase reforming of the low-boiling fraction of rice husk pyrolyzed bio-oil in the presence of platinum catalyst for hydrogen production.
    Pan C; Chen A; Liu Z; Chen P; Lou H; Zheng X
    Bioresour Technol; 2012 Dec; 125():335-9. PubMed ID: 23069602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrogen production from glucose and sorbitol by sorption-enhanced steam reforming: challenges and promises.
    He L; Chen D
    ChemSusChem; 2012 Mar; 5(3):587-95. PubMed ID: 22378630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercritical water gasification of biomass: Thermodynamic constraints.
    Castello D; Fiori L
    Bioresour Technol; 2011 Aug; 102(16):7574-82. PubMed ID: 21640582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photocatalytic reforming of aqueous phase obtained from liquefaction of household mixed waste biomass for renewable bio-hydrogen production.
    Rajagopal J; Gopinath KP; Krishnan A; Vikas Madhav N; Arun J
    Bioresour Technol; 2021 Feb; 321():124529. PubMed ID: 33321296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards stable catalysts for aqueous phase conversion of ethylene glycol for renewable hydrogen.
    Koichumanova K; Vikla AK; de Vlieger DJ; Seshan K; Mojet BL; Lefferts L
    ChemSusChem; 2013 Sep; 6(9):1717-23. PubMed ID: 24023052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases.
    He R; Davda RR; Dumesic JA
    J Phys Chem B; 2005 Feb; 109(7):2810-20. PubMed ID: 16851292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Renewable hydrogen by aqueous-phase reforming of glucose.
    Davda RR; Dumesic JA
    Chem Commun (Camb); 2004 Jan; (1):36-7. PubMed ID: 14737320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy and exergy analyses of a biomass-based hydrogen production system.
    Cohce MK; Dincer I; Rosen MA
    Bioresour Technol; 2011 Sep; 102(18):8466-74. PubMed ID: 21724387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamic modelling and optimization of oxy-reforming and oxy-steam reforming of biogas by RSM.
    Özcan MD; Özcan O; Akın AN
    Environ Technol; 2020 Jan; 41(1):14-28. PubMed ID: 31264942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignin solubilization and aqueous phase reforming for the production of aromatic chemicals and hydrogen.
    Zakzeski J; Weckhuysen BM
    ChemSusChem; 2011 Mar; 4(3):369-78. PubMed ID: 21246746
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring phase transition of aqueous biomass model substrates by high-pressure and high-temperature microfluidics.
    Ripken RM; Schlautmann S; Sanders RGP; Gardeniers JGE; Le Gac S
    Electrophoresis; 2019 Feb; 40(4):563-570. PubMed ID: 30580450
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Steam reforming of biodiesel by-product to make renewable hydrogen.
    Slinn M; Kendall K; Mallon C; Andrews J
    Bioresour Technol; 2008 Sep; 99(13):5851-8. PubMed ID: 18032034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming.
    Hollak SA; Ariëns MA; de Jong KP; van Es DS
    ChemSusChem; 2014 Apr; 7(4):1057-62. PubMed ID: 24596129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.