These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 28691918)

  • 21. Optical Control of Spin Polarization in Monolayer Transition Metal Dichalcogenides.
    Chen X; Yan T; Zhu B; Yang S; Cui X
    ACS Nano; 2017 Feb; 11(2):1581-1587. PubMed ID: 28061025
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phonon Sidebands in Monolayer Transition Metal Dichalcogenides.
    Christiansen D; Selig M; Berghäuser G; Schmidt R; Niehues I; Schneider R; Arora A; de Vasconcellos SM; Bratschitsch R; Malic E; Knorr A
    Phys Rev Lett; 2017 Nov; 119(18):187402. PubMed ID: 29219604
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of New Excitons in Transition Metal Dichalcogenide-Perovskite Oxide System.
    Yin X; Yang M; Tang CS; Wang Q; Xu L; Wu J; Trevisanutto PE; Zeng S; Chin XY; Asmara TC; Feng YP; Ariando A; Chhowalla M; Wang SJ; Zhang W; Rusydi A; Wee ATS
    Adv Sci (Weinh); 2019 Jun; 6(12):1900446. PubMed ID: 31380174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nonlinear All-Optical Coherent Generation and Read-Out of Valleys in Atomically Thin Semiconductors.
    Herrmann P; Klimmer S; Lettau T; Monfared M; Staude I; Paradisanos I; Peschel U; Soavi G
    Small; 2023 Sep; 19(37):e2301126. PubMed ID: 37226688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Achieving near-perfect light absorption in atomically thin transition metal dichalcogenides through band nesting.
    Lee S; Seo D; Park SH; Izquierdo N; Lee EH; Younas R; Zhou G; Palei M; Hoffman AJ; Jang MS; Hinkle CL; Koester SJ; Low T
    Nat Commun; 2023 Jul; 14(1):3889. PubMed ID: 37393324
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly Anisotropic in-Plane Excitons in Atomically Thin and Bulklike 1T'-ReSe
    Arora A; Noky J; Drüppel M; Jariwala B; Deilmann T; Schneider R; Schmidt R; Del Pozo-Zamudio O; Stiehm T; Bhattacharya A; Krüger P; Michaelis de Vasconcellos S; Rohlfing M; Bratschitsch R
    Nano Lett; 2017 May; 17(5):3202-3207. PubMed ID: 28414459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hybridizing Plasmonic Materials with 2D-Transition Metal Dichalcogenides toward Functional Applications.
    Sriram P; Manikandan A; Chuang FC; Chueh YL
    Small; 2020 Apr; 16(15):e1904271. PubMed ID: 32196957
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides.
    Yu H; Liu GB; Gong P; Xu X; Yao W
    Nat Commun; 2014 May; 5():3876. PubMed ID: 24821438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proposal for dark exciton based chemical sensors.
    Feierabend M; Berghäuser G; Knorr A; Malic E
    Nat Commun; 2017 Mar; 8():14776. PubMed ID: 28294110
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Interactions and Magnetotransport through Spin-Valley Coupled Landau Levels in Monolayer MoS_{2}.
    Pisoni R; Kormányos A; Brooks M; Lei Z; Back P; Eich M; Overweg H; Lee Y; Rickhaus P; Watanabe K; Taniguchi T; Imamoglu A; Burkard G; Ihn T; Ensslin K
    Phys Rev Lett; 2018 Dec; 121(24):247701. PubMed ID: 30608765
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Probing Spin-Orbit Coupling and Interlayer Coupling in Atomically Thin Molybdenum Disulfide Using Hydrostatic Pressure.
    Dou X; Ding K; Jiang D; Fan X; Sun B
    ACS Nano; 2016 Jan; 10(1):1619-24. PubMed ID: 26745440
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets.
    Lv R; Robinson JA; Schaak RE; Sun D; Sun Y; Mallouk TE; Terrones M
    Acc Chem Res; 2015 Jan; 48(1):56-64. PubMed ID: 25490673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlling the Electronic Structures and Properties of in-Plane Transition-Metal Dichalcogenides Quantum Wells.
    Wei W; Dai Y; Niu C; Huang B
    Sci Rep; 2015 Nov; 5():17578. PubMed ID: 26616013
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Distributed Bragg Reflectors as Broadband and Large-Area Platforms for Light-Coupling Enhancement in 2D Transition-Metal Dichalcogenides.
    Chen YC; Yeh H; Lee CJ; Chang WH
    ACS Appl Mater Interfaces; 2018 May; 10(19):16874-16880. PubMed ID: 29687706
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Long-lived photoluminescence polarization of localized excitons in liquid exfoliated monolayer enriched WS
    Kłopotowski Ł; Czechowski N; Mitioglu AA; Backes C; Maude DK; Plochocka P
    Nanotechnology; 2018 Aug; 29(33):335703. PubMed ID: 29790860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains.
    Johari P; Shenoy VB
    ACS Nano; 2012 Jun; 6(6):5449-56. PubMed ID: 22591011
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Manipulating spin-polarized photocurrents in 2D transition metal dichalcogenides.
    Xie L; Cui X
    Proc Natl Acad Sci U S A; 2016 Apr; 113(14):3746-50. PubMed ID: 27001834
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Linearly Polarized Luminescence of Atomically Thin MoS
    Granados Del Águila A; Liu S; Do TTH; Lai Z; Tran TH; Krupp SR; Gong ZR; Zhang H; Yao W; Xiong Q
    ACS Nano; 2019 Nov; 13(11):13006-13014. PubMed ID: 31577129
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Defect-Induced Modification of Low-Lying Excitons and Valley Selectivity in Monolayer Transition Metal Dichalcogenides.
    Refaely-Abramson S; Qiu DY; Louie SG; Neaton JB
    Phys Rev Lett; 2018 Oct; 121(16):167402. PubMed ID: 30387666
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.