These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 28692041)

  • 21. Beyond packing of hard spheres: The effects of core softness, non-additivity, intermediate-range repulsion, and many-body interactions on the glass-forming ability of bulk metallic glasses.
    Zhang K; Fan M; Liu Y; Schroers J; Shattuck MD; O'Hern CS
    J Chem Phys; 2015 Nov; 143(18):184502. PubMed ID: 26567672
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Does fragility of glass formation determine the strength of T
    Mangalara JH; Marvin MD; Wiener NR; Mackura ME; Simmons DS
    J Chem Phys; 2017 Mar; 146(10):104902. PubMed ID: 28298103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature Dependence of Structural Relaxation in Glass-Forming Liquids and Polymers.
    Novikov VN; Sokolov AP
    Entropy (Basel); 2022 Aug; 24(8):. PubMed ID: 36010765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relation of the fragility and heat capacity jump in the supercooled liquid region with the shear modulus relaxation in metallic glasses.
    Makarov AS; Qiao JC; Kobelev NP; Aronin AS; Khonik VA
    J Phys Condens Matter; 2021 May; 33(27):. PubMed ID: 33910186
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Why glass elasticity affects the thermodynamics and fragility of supercooled liquids.
    Yan L; Düring G; Wyart M
    Proc Natl Acad Sci U S A; 2013 Apr; 110(16):6307-12. PubMed ID: 23576746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fragility and thermodynamics in nonpolymeric glass-forming liquids.
    Wang LM; Angell CA; Richert R
    J Chem Phys; 2006 Aug; 125(7):074505. PubMed ID: 16942349
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isoconfigurational elastic constants and liquid fragility of a bulk metallic glass forming alloy.
    Lind ML; Duan G; Johnson WL
    Phys Rev Lett; 2006 Jul; 97(1):015501. PubMed ID: 16907383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic and Calorimetric Fragility of Chalcogenide Glass-Forming Liquids: Role of Shear vs Enthalpy Relaxation.
    Xia Y; Yuan B; Gulbiten O; Aitken B; Sen S
    J Phys Chem B; 2021 Mar; 125(10):2754-2760. PubMed ID: 33667334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relaxation time dispersions in glass forming metallic liquids and glasses.
    Wang LM; Liu R; Wang WH
    J Chem Phys; 2008 Apr; 128(16):164503. PubMed ID: 18447455
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Revealing the role of molecular rigidity on the fragility evolution of glass-forming liquids.
    Yildirim C; Raty JY; Micoulaut M
    Nat Commun; 2016 Mar; 7():11086. PubMed ID: 27025348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Correlation between Fragility and the Arrhenius Crossover Phenomenon in Metallic, Molecular, and Network Liquids.
    Jaiswal A; Egami T; Kelton KF; Schweizer KS; Zhang Y
    Phys Rev Lett; 2016 Nov; 117(20):205701. PubMed ID: 27886481
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamics and dynamics of metallic glass formers: their correlation for the investigation on potential energy landscape.
    Hu L; Bian X; Wang W; Liu G; Jia Y
    J Phys Chem B; 2005 Jul; 109(28):13737-42. PubMed ID: 16852721
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Why many polymers are so fragile: A new perspective.
    Dalle-Ferrier C; Kisliuk A; Hong L; Carini G; Carini G; D'Angelo G; Alba-Simionesco C; Novikov VN; Sokolov AP
    J Chem Phys; 2016 Oct; 145(15):154901. PubMed ID: 27782469
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Why Is the Range of Timescale So Wide in Glass-Forming Liquid?
    Egami T; Ryu CW
    Front Chem; 2020; 8():579169. PubMed ID: 33134277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Non-Arrhenius behavior and fragile-to-strong transition of glass-forming liquids.
    Rosa ACP; Cruz C; Santana WS; Brito E; Moret MA
    Phys Rev E; 2020 Apr; 101(4-1):042131. PubMed ID: 32422727
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Viscosity of liquid Ag-In-Sb-Te: Evidence of a fragile-to-strong crossover.
    Orava J; Weber H; Kaban I; Greer AL
    J Chem Phys; 2016 May; 144(19):194503. PubMed ID: 27208954
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Computing the viscosity of supercooled liquids. II. Silica and strong-fragile crossover behavior.
    Kushima A; Lin X; Li J; Qian X; Eapen J; Mauro JC; Diep P; Yip S
    J Chem Phys; 2009 Oct; 131(16):164505. PubMed ID: 19894954
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phenomenological viscous factor in the nonequilibrium distribution function for liquids.
    Morioka S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051203. PubMed ID: 16383595
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shear stress relaxation in liquids.
    Petravic J
    J Chem Phys; 2004 Jun; 120(21):10188-93. PubMed ID: 15268042
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica.
    Saika-Voivod I; Poole PH; Sciortino F
    Nature; 2001 Aug; 412(6846):514-7. PubMed ID: 11484046
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.