These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 28692094)

  • 1. Multi-functionalized herringbone carbon nanofiber for anodes of lithium ion batteries.
    Kim MH; Cho MY; Kim KB; Jeong HG; Han JT; Roh KC
    Phys Chem Chem Phys; 2017 Jul; 19(28):18612-18618. PubMed ID: 28692094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Helical carbon nanofibers modified with Fe
    Qing T; Liu N; Jin Y; Chen G; Min D
    Dalton Trans; 2021 May; 50(17):5819-5827. PubMed ID: 33949522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow carbon nanofibers as high-performance anode materials for sodium-ion batteries.
    Han H; Chen X; Qian J; Zhong F; Feng X; Chen W; Ai X; Yang H; Cao Y
    Nanoscale; 2019 Nov; 11(45):21999-22005. PubMed ID: 31710070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FeCoS
    Xu H; Huang S; Yang Y; Chen J; Liang L; Zhang J; Li L; Zhao X; Zhang W
    Dalton Trans; 2022 Nov; 51(42):16126-16134. PubMed ID: 36227091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Face-centered-cubic lithium crystals formed in mesopores of carbon nanofiber electrodes.
    Lee BS; Seo JH; Son SB; Kim SC; Choi IS; Ahn JP; Oh KH; Lee SH; Yu WR
    ACS Nano; 2013 Jul; 7(7):5801-7. PubMed ID: 23730918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Performance Particle/Polymer Nanofiber Anodes for Li-ion Batteries using Electrospinning.
    Self EC; McRen EC; Pintauro PN
    ChemSusChem; 2016 Jan; 9(2):208-15. PubMed ID: 26749072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfur encapsulated in a TiO2-anchored hollow carbon nanofiber hybrid nanostructure for lithium-sulfur batteries.
    Zhang Z; Li Q; Jiang S; Zhang K; Lai Y; Li J
    Chemistry; 2015 Jan; 21(3):1343-9. PubMed ID: 25413990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binder-Free N- and O-Rich Carbon Nanofiber Anodes for Long Cycle Life K-Ion Batteries.
    Adams RA; Syu JM; Zhao Y; Lo CT; Varma A; Pol VG
    ACS Appl Mater Interfaces; 2017 May; 9(21):17872-17881. PubMed ID: 28485975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of palladium/helical carbon nanofiber hybrid nanostructures and their application for hydrogen peroxide and glucose detection.
    Jia X; Hu G; Nitze F; Barzegar HR; Sharifi T; Tai CW; Wågberg T
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):12017-22. PubMed ID: 24180258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrospun Ni-added SnO2-carbon nanofiber composite anode for high-performance lithium-ion batteries.
    Kim D; Lee D; Kim J; Moon J
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5408-15. PubMed ID: 22999049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reactive Oxygen-Doped 3D Interdigital Carbonaceous Materials for Li and Na Ion Batteries.
    Fan L; Lu B
    Small; 2016 May; 12(20):2783-91. PubMed ID: 27061155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries.
    Hu L; Chen Q
    Nanoscale; 2014; 6(3):1236-57. PubMed ID: 24356788
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalyst engineering for lithium ion batteries: the catalytic role of Ge in enhancing the electrochemical performance of SnO2(GeO2)0.13/G anodes.
    Zhu YG; Wang Y; Han ZJ; Shi Y; Wong JI; Huang ZX; Ostrikov KK; Yang HY
    Nanoscale; 2014 Dec; 6(24):15020-8. PubMed ID: 25367289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. α-Fe2O3 nanoparticle-loaded carbon nanofibers as stable and high-capacity anodes for rechargeable lithium-ion batteries.
    Ji L; Toprakci O; Alcoutlabi M; Yao Y; Li Y; Zhang S; Guo B; Lin Z; Zhang X
    ACS Appl Mater Interfaces; 2012 May; 4(5):2672-9. PubMed ID: 22524417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nano electrochemical reactors of Fe2O3 nanoparticles embedded in shells of nitrogen-doped hollow carbon spheres as high-performance anodes for lithium-ion batteries.
    Zheng F; He M; Yang Y; Chen Q
    Nanoscale; 2015 Feb; 7(8):3410-7. PubMed ID: 25631451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure Interlacing and Pore Engineering of Zn2GeO4 Nanofibers for Achieving High Capacity and Rate Capability as an Anode Material of Lithium Ion Batteries.
    Wang W; Qin J; Cao M
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1388-97. PubMed ID: 26709720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of SnO2 versus Sn crystals within N-doped porous carbon nanofibers via electrospinning towards high-performance lithium ion batteries.
    Wang H; Lu X; Li L; Li B; Cao D; Wu Q; Li Z; Yang G; Guo B; Niu C
    Nanoscale; 2016 Apr; 8(14):7595-603. PubMed ID: 26984273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Core-Shell Fe/Fe2 O3 Nanowire as a High-Performance Anode Material for Lithium-Ion Batteries.
    Na Z; Huang G; Liang F; Yin D; Wang L
    Chemistry; 2016 Aug; 22(34):12081-7. PubMed ID: 27406922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Situ Synthesis and Characterization of Ge Embedded Electrospun Carbon Nanostructures as High Performance Anode Material for Lithium-Ion Batteries.
    Lee YW; Kim DM; Kim SJ; Kim MC; Choe HS; Lee KH; Sohn JI; Cha SN; Kim JM; Park KW
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7022-9. PubMed ID: 26895137
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ one-step hydrothermal synthesis of a lead germanate-graphene composite as a novel anode material for lithium-ion batteries.
    Wang J; Feng CQ; Sun ZQ; Chou SL; Liu HK; Wang JZ
    Sci Rep; 2014 Nov; 4():7030. PubMed ID: 25391220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.