These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
226 related articles for article (PubMed ID: 28692152)
1. Suberin lamellae in the hypodermis of maize (Zea mays) roots; development and factors affecting the permeability of hypodermal layers. Clarkson DT; Robards AW; Stephens JE; Stark M Plant Cell Environ; 1987 Jan; 10(1):83-93. PubMed ID: 28692152 [TBL] [Abstract][Full Text] [Related]
2. Chemical composition of apoplastic transport barriers in relation to radial hydraulic conductivity of corn roots (Zea mays L.). Zimmermann HM; Hartmann K; Schreiber L; Steudle E Planta; 2000 Jan; 210(2):302-11. PubMed ID: 10664137 [TBL] [Abstract][Full Text] [Related]
3. RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). Shiono K; Ando M; Nishiuchi S; Takahashi H; Watanabe K; Nakamura M; Matsuo Y; Yasuno N; Yamanouchi U; Fujimoto M; Takanashi H; Ranathunge K; Franke RB; Shitan N; Nishizawa NK; Takamure I; Yano M; Tsutsumi N; Schreiber L; Yazaki K; Nakazono M; Kato K Plant J; 2014 Oct; 80(1):40-51. PubMed ID: 25041515 [TBL] [Abstract][Full Text] [Related]
4. Chemical analysis and immunolocalisation of lignin and suberin in endodermal and hypodermal/rhizodermal cell walls of developing maize (Zea mays L.) primary roots. Zeier J; Ruel K; Ryser U; Schreiber L Planta; 1999 Jul; 209(1):1-12. PubMed ID: 10467026 [TBL] [Abstract][Full Text] [Related]
5. The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix). Schreiber L; Franke R; Hartmann KD; Ranathunge K; Steudle E J Exp Bot; 2005 May; 56(415):1427-36. PubMed ID: 15809280 [TBL] [Abstract][Full Text] [Related]
6. Enhanced formation of aerenchyma and induction of a barrier to radial oxygen loss in adventitious roots of Zea nicaraguensis contribute to its waterlogging tolerance as compared with maize (Zea mays ssp. mays). Abiko T; Kotula L; Shiono K; Malik AI; Colmer TD; Nakazono M Plant Cell Environ; 2012 Sep; 35(9):1618-30. PubMed ID: 22471697 [TBL] [Abstract][Full Text] [Related]
7. Magnesium deficiency results in increased suberization in endodermis and hypodermis of corn roots. Pozuelo JM; Espelie KE; Kolattukudy PE Plant Physiol; 1984 Feb; 74(2):256-60. PubMed ID: 16663407 [TBL] [Abstract][Full Text] [Related]
8. Sites of entry of water into the symplast of maize roots. Varney GT; McCully ME; Canny MJ New Phytol; 1993 Dec; 125(4):733-741. PubMed ID: 33874454 [TBL] [Abstract][Full Text] [Related]
9. The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers. Ranathunge K; Kim YX; Wassmann F; Kreszies T; Zeisler V; Schreiber L Ann Bot; 2017 Mar; 119(4):629-643. PubMed ID: 28065927 [TBL] [Abstract][Full Text] [Related]
10. Functional and chemical comparison of apoplastic barriers to radial oxygen loss in roots of rice (Oryza sativa L.) grown in aerated or deoxygenated solution. Kotula L; Ranathunge K; Schreiber L; Steudle E J Exp Bot; 2009; 60(7):2155-67. PubMed ID: 19443620 [TBL] [Abstract][Full Text] [Related]
11. Water Transport in Onion (Allium cepa L.) Roots (Changes of Axial and Radial Hydraulic Conductivities during Root Development). Melchior W; Steudle E Plant Physiol; 1993 Apr; 101(4):1305-1315. PubMed ID: 12231786 [TBL] [Abstract][Full Text] [Related]
12. Exogenous abscisic acid induces the formation of a suberized barrier to radial oxygen loss in adventitious roots of barley (Hordeum vulgare). Shiono K; Matsuura H Ann Bot; 2024 May; 133(7):931-940. PubMed ID: 38448365 [TBL] [Abstract][Full Text] [Related]
13. Cell wall adaptations to multiple environmental stresses in maize roots. Degenhardt B; Gimmler H J Exp Bot; 2000 Mar; 51(344):595-603. PubMed ID: 10938816 [TBL] [Abstract][Full Text] [Related]
14. A major locus involved in the formation of the radial oxygen loss barrier in adventitious roots of teosinte Zea nicaraguensis is located on the short-arm of chromosome 3. Watanabe K; Takahashi H; Sato S; Nishiuchi S; Omori F; Malik AI; Colmer TD; Mano Y; Nakazono M Plant Cell Environ; 2017 Feb; 40(2):304-316. PubMed ID: 27762444 [TBL] [Abstract][Full Text] [Related]
15. Nitrate Chen A; Liu T; Deng Y; Xiao R; Zhang T; Wang Y; Yang Y; Lakshmanan P; Shi X; Zhang F; Chen X Sci Total Environ; 2023 Jun; 878():162848. PubMed ID: 36931522 [TBL] [Abstract][Full Text] [Related]
16. Chemical composition and ultrastructure of broad bean (Vicia faba L.) nodule endodermis in comparison to the root endodermis. Hartmann K; Peiter E; Koch K; Schubert S; Schreiber L Planta; 2002 May; 215(1):14-25. PubMed ID: 12012237 [TBL] [Abstract][Full Text] [Related]
17. Water and solute permeabilities of Arabidopsis roots in relation to the amount and composition of aliphatic suberin. Ranathunge K; Schreiber L J Exp Bot; 2011 Mar; 62(6):1961-74. PubMed ID: 21421706 [TBL] [Abstract][Full Text] [Related]
18. Ammonium-induced architectural and anatomical changes with altered suberin and lignin levels significantly change water and solute permeabilities of rice (Oryza sativa L.) roots. Ranathunge K; Schreiber L; Bi YM; Rothstein SJ Planta; 2016 Jan; 243(1):231-49. PubMed ID: 26384983 [TBL] [Abstract][Full Text] [Related]
19. Structural Changes and Associated Reduction of Hydraulic Conductance in Roots of Sorghum bicolor L. following Exposure to Water Deficit. Cruz RT; Jordan WR; Drew MC Plant Physiol; 1992 May; 99(1):203-12. PubMed ID: 16668850 [TBL] [Abstract][Full Text] [Related]
20. Effect and localization of phenanthrene in maize roots. Dupuy J; Leglize P; Vincent Q; Zelko I; Mustin C; Ouvrard S; Sterckeman T Chemosphere; 2016 Apr; 149():130-6. PubMed ID: 26855216 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]