These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 28692249)

  • 1. The Emergence of Phenolic Glycans as Virulence Factors in Mycobacterium tuberculosis.
    Barnes DD; Lundahl MLE; Lavelle EC; Scanlan EM
    ACS Chem Biol; 2017 Aug; 12(8):1969-1979. PubMed ID: 28692249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of glycans and glycoproteins in disease development by Mycobacterium tuberculosis.
    Sonawane A; Mohanty S; Jagannathan L; Bekolay A; Banerjee S
    Crit Rev Microbiol; 2012 Aug; 38(3):250-66. PubMed ID: 22324751
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Cell Wall Lipid PDIM Contributes to Phagosomal Escape and Host Cell Exit of
    Quigley J; Hughitt VK; Velikovsky CA; Mariuzza RA; El-Sayed NM; Briken V
    mBio; 2017 Mar; 8(2):. PubMed ID: 28270579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glycan-rich outer layer of the cell wall of Mycobacterium tuberculosis acts as an antiphagocytic capsule limiting the association of the bacterium with macrophages.
    Stokes RW; Norris-Jones R; Brooks DE; Beveridge TJ; Doxsee D; Thorson LM
    Infect Immun; 2004 Oct; 72(10):5676-86. PubMed ID: 15385466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipoarabinomannan, and its related glycolipids, induce divergent and opposing immune responses to Mycobacterium tuberculosis depending on structural diversity and experimental variations.
    Källenius G; Correia-Neves M; Buteme H; Hamasur B; Svenson SB
    Tuberculosis (Edinb); 2016 Jan; 96():120-30. PubMed ID: 26586646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Twenty Years of Mycobacterial Glycans: Furanosides and Beyond.
    Lowary TL
    Acc Chem Res; 2016 Jul; 49(7):1379-88. PubMed ID: 27294709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical Synthesis of Cell Wall Constituents of
    Holzheimer M; Buter J; Minnaard AJ
    Chem Rev; 2021 Aug; 121(15):9554-9643. PubMed ID: 34190544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Underestimated Manipulative Roles of
    Garcia-Vilanova A; Chan J; Torrelles JB
    Front Immunol; 2019; 10():2909. PubMed ID: 31921168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development.
    Bailo R; Bhatt A; Aínsa JA
    Biochem Pharmacol; 2015 Aug; 96(3):159-67. PubMed ID: 25986884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mycobacterium tuberculosis virulence: insights and impact on vaccine development.
    Delogu G; Provvedi R; Sali M; Manganelli R
    Future Microbiol; 2015; 10(7):1177-94. PubMed ID: 26119086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host-pathogen interaction.
    Mishra AK; Driessen NN; Appelmelk BJ; Besra GS
    FEMS Microbiol Rev; 2011 Nov; 35(6):1126-57. PubMed ID: 21521247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rv0180c contributes to Mycobacterium tuberculosis cell shape and to infectivity in mice and macrophages.
    Payros D; Alonso H; Malaga W; Volle A; Mazères S; Déjean S; Valière S; Moreau F; Balor S; Stella A; Combes-Soia L; Burlet-Schiltz O; Bouchez O; Nigou J; Astarie-Dequeker C; Guilhot C
    PLoS Pathog; 2021 Nov; 17(11):e1010020. PubMed ID: 34724002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical and Structural Characterization of TesA, a Major Thioesterase Required for Outer-Envelope Lipid Biosynthesis in Mycobacterium tuberculosis.
    Nguyen PC; Nguyen VS; Martin BP; Fourquet P; Camoin L; Spilling CD; Cavalier JF; Cambillau C; Canaan S
    J Mol Biol; 2018 Dec; 430(24):5120-5136. PubMed ID: 30292819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell envelope lipids in the pathophysiology of Mycobacterium tuberculosis.
    Singh P; Rameshwaram NR; Ghosh S; Mukhopadhyay S
    Future Microbiol; 2018 May; 13():689-710. PubMed ID: 29771143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of cytokine release by mycobacterium tuberculosis phenolic glycolipid analogues.
    Elsaidi HR; Lowary TL
    Chembiochem; 2014 May; 15(8):1176-82. PubMed ID: 24797221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mycobacterial phenolic glycolipid virulence factor biosynthesis: mechanism and small-molecule inhibition of polyketide chain initiation.
    Ferreras JA; Stirrett KL; Lu X; Ryu JS; Soll CE; Tan DS; Quadri LE
    Chem Biol; 2008 Jan; 15(1):51-61. PubMed ID: 18158259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of Ca
    Sharma S; Meena LS
    Appl Biochem Biotechnol; 2017 Feb; 181(2):762-771. PubMed ID: 27660000
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathogenicity and virulence of
    Rahlwes KC; Dias BRS; Campos PC; Alvarez-Arguedas S; Shiloh MU
    Virulence; 2023 Dec; 14(1):2150449. PubMed ID: 36419223
    [No Abstract]   [Full Text] [Related]  

  • 19. Trafficking of
    Layre E
    Front Immunol; 2020; 11():1230. PubMed ID: 32765485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The biology of Mycobacterium cord factor and roles in pathogen-host interaction.
    Li C; Du Q; Deng W; Xie J
    Crit Rev Eukaryot Gene Expr; 2012; 22(4):289-97. PubMed ID: 23272799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.