These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28692269)

  • 1. Unimolecular Decay of the Dimethyl-Substituted Criegee Intermediate in Alkene Ozonolysis: Decay Time Scales and the Importance of Tunneling.
    Drozd GT; Kurtén T; Donahue NM; Lester MI
    J Phys Chem A; 2017 Aug; 121(32):6036-6045. PubMed ID: 28692269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.
    Lester MI; Klippenstein SJ
    Acc Chem Res; 2018 Apr; 51(4):978-985. PubMed ID: 29613756
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tunneling effects in the unimolecular decay of (CH
    Fang Y; Barber VP; Klippenstein SJ; McCoy AB; Lester MI
    J Chem Phys; 2017 Apr; 146(13):134307. PubMed ID: 28390384
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products.
    Fang Y; Liu F; Barber VP; Klippenstein SJ; McCoy AB; Lester MI
    J Chem Phys; 2016 Feb; 144(6):061102. PubMed ID: 26874475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct observation of unimolecular decay of CH3CH2CHOO Criegee intermediates to OH radical products.
    Fang Y; Liu F; Klippenstein SJ; Lester MI
    J Chem Phys; 2016 Jul; 145(4):044312. PubMed ID: 27475366
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective deuteration illuminates the importance of tunneling in the unimolecular decay of Criegee intermediates to hydroxyl radical products.
    Green AM; Barber VP; Fang Y; Klippenstein SJ; Lester MI
    Proc Natl Acad Sci U S A; 2017 Nov; 114(47):12372-12377. PubMed ID: 29109292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unimolecular Decomposition Rate of the Criegee Intermediate (CH3)2COO Measured Directly with UV Absorption Spectroscopy.
    Smith MC; Chao W; Takahashi K; Boering KA; Lin JJ
    J Phys Chem A; 2016 Jul; 120(27):4789-98. PubMed ID: 26985985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep tunneling in the unimolecular decay of CH
    Fang Y; Liu F; Barber VP; Klippenstein SJ; McCoy AB; Lester MI
    J Chem Phys; 2016 Dec; 145(23):234308. PubMed ID: 28010089
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.
    Huang HL; Chao W; Lin JJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10857-62. PubMed ID: 26283390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roaming in the Unimolecular Decay of
    Liu T; Lester MI
    J Phys Chem A; 2023 Dec; 127(51):10817-10827. PubMed ID: 38109698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2,3-Dimethyl-2-butene (TME) ozonolysis: pressure dependence of stabilized Criegee intermediates and evidence of stabilized vinyl hydroperoxides.
    Drozd GT; Kroll J; Donahue NM
    J Phys Chem A; 2011 Jan; 115(2):161-6. PubMed ID: 21162563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct production of OH radicals upon CH overtone activation of (CH3)2COO Criegee intermediates.
    Liu F; Beames JM; Lester MI
    J Chem Phys; 2014 Dec; 141(23):234312. PubMed ID: 25527940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure-Dependent Criegee Intermediate Stabilization from Alkene Ozonolysis.
    Hakala JP; Donahue NM
    J Phys Chem A; 2016 Apr; 120(14):2173-8. PubMed ID: 27018612
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity map imaging of OH radical products from IR activated (CH3)2COO Criegee intermediates.
    Li H; Kidwell NM; Wang X; Bowman JM; Lester MI
    J Chem Phys; 2016 Sep; 145(10):104307. PubMed ID: 27634260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-Carbon Criegee Intermediate from Isoprene Ozonolysis: Methyl Vinyl Ketone Oxide Synthesis, Infrared Spectrum, and OH Production.
    Barber VP; Pandit S; Green AM; Trongsiriwat N; Walsh PJ; Klippenstein SJ; Lester MI
    J Am Chem Soc; 2018 Aug; 140(34):10866-10880. PubMed ID: 30074392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pressure dependence of stabilized Criegee intermediate formation from a sequence of alkenes.
    Drozd GT; Donahue NM
    J Phys Chem A; 2011 May; 115(17):4381-7. PubMed ID: 21476564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Measurements of Unimolecular and Bimolecular Reaction Kinetics of the Criegee Intermediate (CH
    Chhantyal-Pun R; Welz O; Savee JD; Eskola AJ; Lee EP; Blacker L; Hill HR; Ashcroft M; Khan MA; Lloyd-Jones GC; Evans L; Rotavera B; Huang H; Osborn DL; Mok DK; Dyke JM; Shallcross DE; Percival CJ; Orr-Ewing AJ; Taatjes CA
    J Phys Chem A; 2017 Jan; 121(1):4-15. PubMed ID: 27755879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unimolecular reaction of acetone oxide and its reaction with water in the atmosphere.
    Long B; Bao JL; Truhlar DG
    Proc Natl Acad Sci U S A; 2018 Jun; 115(24):6135-6140. PubMed ID: 29844185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid Allylic 1,6 H-Atom Transfer in an Unsaturated Criegee Intermediate.
    Hansen AS; Qian Y; Sojdak CA; Kozlowski MC; Esposito VJ; Francisco JS; Klippenstein SJ; Lester MI
    J Am Chem Soc; 2022 Apr; 144(13):5945-5955. PubMed ID: 35344666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solving the discrepancy between the direct and relative-rate determinations of unimolecular reaction kinetics of dimethyl-substituted Criegee intermediate (CH
    Peltola J; Seal P; Vuorio N; Heinonen P; Eskola A
    Phys Chem Chem Phys; 2022 Feb; 24(8):5211-5219. PubMed ID: 35167635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.