These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 28692762)

  • 1. Nanoscale Ultrasound-Switchable FRET-Based Liposomes for Near-Infrared Fluorescence Imaging in Optically Turbid Media.
    Zhang Q; Morgan SP; Mather ML
    Small; 2017 Sep; 13(33):. PubMed ID: 28692762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasound Induced Fluorescence of Nanoscale Liposome Contrast Agents.
    Zhang Q; Morgan SP; O'Shea P; Mather ML
    PLoS One; 2016; 11(7):e0159742. PubMed ID: 27467748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High resolution imaging beyond the acoustic diffraction limit in deep tissue via ultrasound-switchable NIR fluorescence.
    Pei Y; Wei MY; Cheng B; Liu Y; Xie Z; Nguyen K; Yuan B
    Sci Rep; 2014 Apr; 4():4690. PubMed ID: 24732947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Biocompatible and Near-Infrared Liposome for In Vivo Ultrasound-Switchable Fluorescence Imaging.
    Liu Y; Yao T; Cai W; Yu S; Hong Y; Nguyen KT; Yuan B
    Adv Healthc Mater; 2020 Feb; 9(4):e1901457. PubMed ID: 31957243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioluminescence Imaging of Inflammation in Vivo Based on Bioluminescence and Fluorescence Resonance Energy Transfer Using Nanobubble Ultrasound Contrast Agent.
    Liu R; Tang J; Xu Y; Dai Z
    ACS Nano; 2019 May; 13(5):5124-5132. PubMed ID: 31059237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Liposomal encapsulation of a near-infrared fluorophore enhances fluorescence quenching and reliable whole body optical imaging upon activation in vivo.
    Tansi FL; Rüger R; Rabenhold M; Steiniger F; Fahr A; Kaiser WA; Hilger I
    Small; 2013 Nov; 9(21):3659-69. PubMed ID: 23650267
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Resolution Ultrasound-Switchable Fluorescence Imaging in Centimeter-Deep Tissue Phantoms with High Signal-To-Noise Ratio and High Sensitivity via Novel Contrast Agents.
    Cheng B; Bandi V; Wei MY; Pei Y; D'Souza F; Nguyen KT; Hong Y; Yuan B
    PLoS One; 2016; 11(11):e0165963. PubMed ID: 27829050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance.
    Kolste KK; Kanick SC; Valdés PA; Jermyn M; Wilson BC; Roberts DW; Paulsen KD; Leblond F
    J Biomed Opt; 2015 Feb; 20(2):26002. PubMed ID: 25652704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An activatable liposomal fluorescence probe based on fluorescence resonance energy transfer and aggregation induced emission effect for sensitive tumor imaging.
    Xia Y; Xu C; Zhang X; Gao J; Wu Y; Li C; Wang Z
    Colloids Surf B Biointerfaces; 2020 Apr; 188():110789. PubMed ID: 31955018
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence-quenching of a liposomal-encapsulated near-infrared fluorophore as a tool for in vivo optical imaging.
    Tansi FL; Rüger R; Rabenhold M; Steiniger F; Fahr A; Hilger I
    J Vis Exp; 2015 Jan; (95):e52136. PubMed ID: 25591069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions of indocyanine green and lipid in enhancing near-infrared fluorescence properties: the basis for near-infrared imaging in vivo.
    Kraft JC; Ho RJ
    Biochemistry; 2014 Mar; 53(8):1275-83. PubMed ID: 24512123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of biocompatible polymeric nanoparticles for in vivo NIR and FRET imaging.
    Wagh A; Qian SY; Law B
    Bioconjug Chem; 2012 May; 23(5):981-92. PubMed ID: 22482883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small molecular interaction-based fluorescence enhancement for second near-infrared imaging.
    Zian W; Yang L; Peng W; Yifei J; Min J
    Nanomedicine (Lond); 2020 Jan; 15(2):115-129. PubMed ID: 31903846
    [No Abstract]   [Full Text] [Related]  

  • 14. Size effect of liposomes on centimeter-deep ultrasound-switchable fluorescence imaging and ultrasound-controlled release.
    Liu Y; Yao T; Ren L; Yuan B
    J Mater Chem B; 2022 Nov; 10(43):8970-8980. PubMed ID: 36285768
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A phantom for visualization of three-dimensional drug release by ultrasound-induced mild hyperthermia.
    Lai CY; Kruse D; Seo JW; Kheirolomoom A; Ferrara KW
    Med Phys; 2013 Aug; 40(8):083301. PubMed ID: 23927360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A modular labeling strategy for in vivo PET and near-infrared fluorescence imaging of nanoparticle tumor targeting.
    Pérez-Medina C; Abdel-Atti D; Zhang Y; Longo VA; Irwin CP; Binderup T; Ruiz-Cabello J; Fayad ZA; Lewis JS; Mulder WJ; Reiner T
    J Nucl Med; 2014 Oct; 55(10):1706-11. PubMed ID: 25060196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multicolor nanobubbles for FRET/ultrasound dual-modal contrast imaging.
    Zhang X; Liu R; Dai Z
    Nanoscale; 2018 Nov; 10(43):20347-20353. PubMed ID: 30375631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence resonance energy transfer in polydiacetylene liposomes.
    Li X; Matthews S; Kohli P
    J Phys Chem B; 2008 Oct; 112(42):13263-72. PubMed ID: 18816092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel multicolor fluorescently labeled silica nanoparticles for interface fluorescence resonance energy transfer to and from labeled avidin.
    Saleh SM; Müller R; Mader HS; Duerkop A; Wolfbeis OS
    Anal Bioanal Chem; 2010 Oct; 398(4):1615-23. PubMed ID: 20446080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FRET Sensor for Erythrosine Dye Based on Organic Nanoparticles: Application to Analysis of Food Stuff.
    Mahajan PG; Bhopate DP; Kolekar GB; Patil SR
    J Fluoresc; 2016 Jul; 26(4):1467-78. PubMed ID: 27246163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.