BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 28692805)

  • 1. Stability, Scale-up, and Performance of Quantum Dot Solar Cells with Carbonate-Treated Titanium Oxide Films.
    Kumar PN; Kolay A; Deepa M; Shivaprasad SM; Srivastava AK
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25278-25290. PubMed ID: 28692805
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Counter Electrode Impact on Quantum Dot Solar Cell Efficiencies.
    Kumar PN; Kolay A; Kumar SK; Patra P; Aphale A; Srivastava AK; Deepa M
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27688-27700. PubMed ID: 27700023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved performance of CuInS2 quantum dot-sensitized solar cells based on a multilayered architecture.
    Chang JY; Lin JM; Su LF; Chang CF
    ACS Appl Mater Interfaces; 2013 Sep; 5(17):8740-52. PubMed ID: 23937511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced light absorption and charge recombination control in quantum dot sensitized solar cells using tin doped cadmium sulfide quantum dots.
    Muthalif MPA; Sunesh CD; Choe Y
    J Colloid Interface Sci; 2019 Jan; 534():291-300. PubMed ID: 30237116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Titanium oxide morphology controls charge collection efficiency in quantum dot solar cells.
    Kolay A; Kumar PN; Kumar SK; Deepa M
    Phys Chem Chem Phys; 2017 Feb; 19(6):4607-4617. PubMed ID: 28124689
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar cells with PbS quantum dot sensitized TiO
    Kokal RK; Deepa M; Kalluri A; Singh S; Macwan I; Patra PK; Gilarde J
    Phys Chem Chem Phys; 2017 Oct; 19(38):26330-26345. PubMed ID: 28936513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Cost Copper Nanostructures Impart High Efficiencies to Quantum Dot Solar Cells.
    Kumar PN; Deepa M; Ghosal P
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13303-13. PubMed ID: 26000891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New Antimony Selenide/Nickel Oxide Photocathode Boosts the Efficiency of Graphene Quantum-Dot Co-Sensitized Solar Cells.
    Kolay A; Kokal RK; Kalluri A; Macwan I; Patra PK; Ghosal P; Deepa M
    ACS Appl Mater Interfaces; 2017 Oct; 9(40):34915-34926. PubMed ID: 28921953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gradient-band-gap strategy for efficient solid-state PbS quantum-dot sensitized solar cells.
    Ma C; Shi C; Lv K; Ying C; Fan S; Yang Y
    Nanoscale; 2019 Apr; 11(17):8402-8407. PubMed ID: 30985839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CuS/CdS Quantum Dot Composite Sensitizer and Its Applications to Various TiO2 Mesoporous Film-Based Solar Cell Devices.
    Kim M; Ochirbat A; Lee HJ
    Langmuir; 2015 Jul; 31(27):7609-15. PubMed ID: 26086801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of eco-friendly CuInS2 quantum dot-sensitized solar cells by a combined ex situ/in situ growth approach.
    Chang CC; Chen JK; Chen CP; Yang CH; Chang JY
    ACS Appl Mater Interfaces; 2013 Nov; 5(21):11296-306. PubMed ID: 24095097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost-effective and morphology controllable PVP based highly efficient CuS counter electrodes for high-efficiency quantum dot-sensitized solar cells.
    Kim HJ; Myung-Sik L; Gopi CV; Venkata-Haritha M; Rao SS; Kim SK
    Dalton Trans; 2015 Jul; 44(25):11340-51. PubMed ID: 26011676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cosensitized Quantum Dot Solar Cells with Conversion Efficiency over 12.
    Wang W; Feng W; Du J; Xue W; Zhang L; Zhao L; Li Y; Zhong X
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29359826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Strategy to Enhance the Efficiency of Quantum Dot-Sensitized Solar Cells by Decreasing Electron Recombination with Polyoxometalate/TiO
    Chen L; Chen W; Li J; Wang J; Wang E
    ChemSusChem; 2017 Jul; 10(14):2945-2954. PubMed ID: 28544657
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual function of molybdenum sulfide/C-cloth in enhancing the performance of fullerene nanosheets based solar cell and supercapacitor.
    Das A; Deepa M; Ghosal P
    RSC Adv; 2018 Oct; 8(61):34984-34998. PubMed ID: 35547027
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High Efficiency CdS/CdSe Quantum Dot Sensitized Solar Cells with Two ZnSe Layers.
    Huang F; Zhang L; Zhang Q; Hou J; Wang H; Wang H; Peng S; Liu J; Cao G
    ACS Appl Mater Interfaces; 2016 Dec; 8(50):34482-34489. PubMed ID: 27936551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ag plasmonic nanostructures and a novel gel electrolyte in a high efficiency TiO2/CdS solar cell.
    Kumar PN; Deepa M; Srivastava AK
    Phys Chem Chem Phys; 2015 Apr; 17(15):10040-52. PubMed ID: 25785507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solar Paint from TiO
    Shen G; Du Z; Pan Z; Du J; Zhong X
    ACS Omega; 2018 Jan; 3(1):1102-1109. PubMed ID: 31457952
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recombination Suppression in PbS Quantum Dot Heterojunction Solar Cells by Energy-Level Alignment in the Quantum Dot Active Layers.
    Ding C; Zhang Y; Liu F; Nakazawa N; Huang Q; Hayase S; Ogomi Y; Toyoda T; Wang R; Shen Q
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26142-26152. PubMed ID: 28862833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A stoichiometric CdS interlayer for the photovoltaic performance enhancement of quantum-dot sensitized solar cells.
    Chen S; Wang Y; Lu S; Liu Y; Zhang X
    Phys Chem Chem Phys; 2019 Feb; 21(7):3970-3975. PubMed ID: 30706911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.