These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 28692980)

  • 1. A Control Scheme to Minimize Muscle Energy for Power Assistant Robotic Systems Under Unknown External Perturbation.
    Lee J; Kim M; Kim K
    IEEE Trans Neural Syst Rehabil Eng; 2017 Dec; 25(12):2313-2327. PubMed ID: 28692980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of elbow-induced wrist force with EMG signals using fast orthogonal search.
    Mobasser F; Eklund JM; Hashtrudi-Zaad K
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):683-93. PubMed ID: 17405375
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Movement stability analysis of surface electromyography-based elbow power assistance.
    Kwon S; Kim Y; Kim J
    IEEE Trans Biomed Eng; 2014 Apr; 61(4):1134-42. PubMed ID: 24658238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. sEMG-based joint force control for an upper-limb power-assist exoskeleton robot.
    Li Z; Wang B; Sun F; Yang C; Xie Q; Zhang W
    IEEE J Biomed Health Inform; 2014 May; 18(3):1043-50. PubMed ID: 24235314
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A frequency and pulse-width co-modulation strategy for transcutaneous neuromuscular electrical stimulation based on sEMG time-domain features.
    Zhou YX; Wang HP; Bao XL; Lü XY; Wang ZG
    J Neural Eng; 2016 Feb; 13(1):016004. PubMed ID: 26644193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.
    Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A High-Level Control Algorithm Based on sEMG Signalling for an Elbow Joint SMA Exoskeleton.
    Copaci D; Serrano D; Moreno L; Blanco D
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30072609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inter-joint coupling strategy during adaptation to novel viscous loads in human arm movement.
    Debicki DB; Gribble PL
    J Neurophysiol; 2004 Aug; 92(2):754-65. PubMed ID: 15056688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Implementation of a Surface Electromyography-Based Upper Extremity Exoskeleton Controller Using Learning from Demonstration.
    Siu HC; Arenas AM; Sun T; Stirling LA
    Sensors (Basel); 2018 Feb; 18(2):. PubMed ID: 29401754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Counteractive relationship between the interaction torque and muscle torque at the wrist is predestined in ball-throwing.
    Hirashima M; Ohgane K; Kudo K; Hase K; Ohtsuki T
    J Neurophysiol; 2003 Sep; 90(3):1449-63. PubMed ID: 12966174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of the wrist in three-joint arm movements to multiple directions in the horizontal plane.
    Koshland GF; Galloway JC; Nevoret-Bell CJ
    J Neurophysiol; 2000 May; 83(5):3188-95. PubMed ID: 10805717
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Elbow Flexion Force Estimation Through a Muscle Twitch Model and sEMG in a Fatigue Condition.
    Na Y; Kim J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Sep; 25(9):1431-1439. PubMed ID: 28113944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of Upper-Limb Movements Based on Muscle Shape Change Signals for Human-Robot Interaction.
    Huang P; Wang H; Wang Y; Liu Z; Samuel OW; Yu M; Li X; Chen S; Li G
    Comput Math Methods Med; 2020; 2020():5694265. PubMed ID: 32351614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of Muscular Activity and Movement Performance in Robot-Assisted and Freely Performed Exercises.
    Becker S; Bergamo F; Williams S; Disselhorst-Klug C
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jan; 27(1):43-50. PubMed ID: 30489270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Individual muscle control using an exoskeleton robot for muscle function testing.
    Ueda J; Ming D; Krishnamoorthy V; Shinohara M; Ogasawara T
    IEEE Trans Neural Syst Rehabil Eng; 2010 Aug; 18(4):339-50. PubMed ID: 20363684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of a muscle stiffness sensor and electromyography and mechanomyography under fatigue conditions.
    Han H; Jo S; Kim J
    Med Biol Eng Comput; 2015 Jul; 53(7):577-88. PubMed ID: 25752771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intention-based EMG control for powered exoskeletons.
    Lenzi T; De Rossi SM; Vitiello N; Carrozza MC
    IEEE Trans Biomed Eng; 2012 Aug; 59(8):2180-90. PubMed ID: 22588573
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compensation for interaction torques during single- and multijoint limb movement.
    Gribble PL; Ostry DJ
    J Neurophysiol; 1999 Nov; 82(5):2310-26. PubMed ID: 10561408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Optimal Method of Training the Specific Lower Limb Muscle Group Using an Exoskeletal Robot.
    Hwang B; Oh BM; Jeon D
    IEEE Trans Neural Syst Rehabil Eng; 2018 Apr; 26(4):830-838. PubMed ID: 29641387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.