BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 28693314)

  • 1. Plasmonic Vertically Coupled Complementary Antennas for Dual-Mode Infrared Molecule Sensing.
    Chen X; Wang C; Yao Y; Wang C
    ACS Nano; 2017 Aug; 11(8):8034-8046. PubMed ID: 28693314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous Chemical and Refractive Index Sensing in the 1-2.5 μm Near-Infrared Wavelength Range on Nanoporous Gold Disks.
    Shih WC; Santos GM; Zhao F; Zenasni O; Arnob MM
    Nano Lett; 2016 Jul; 16(7):4641-7. PubMed ID: 27294888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual-band complementary metamaterial perfect absorber for multispectral molecular sensing.
    Zhang L; Lu W; Zhu L; Xu H; Wang H; Pan H; An Z
    Opt Express; 2023 Sep; 31(19):31024-31038. PubMed ID: 37710631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unveiling the correlation between nanometer-thick molecular monolayer sensitivity and near-field enhancement and localization in coupled plasmonic oligomers.
    König M; Rahmani M; Zhang L; Lei DY; Roschuk TR; Giannini V; Qiu CW; Hong M; Schlücker S; Maier SA
    ACS Nano; 2014 Sep; 8(9):9188-98. PubMed ID: 25136980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Enhanced Infrared Absorption: Pushing the Frontier for On-Chip Gas Sensing.
    Chong X; Zhang Y; Li E; Kim KJ; Ohodnicki PR; Chang CH; Wang AX
    ACS Sens; 2018 Jan; 3(1):230-238. PubMed ID: 29262684
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fano Metamaterials on Nanopedestals for Plasmon-Enhanced Infrared Spectroscopy.
    Jung Y; Hwang I; Yu J; Lee J; Choi JH; Jeong JH; Jung JY; Lee J
    Sci Rep; 2019 May; 9(1):7834. PubMed ID: 31127173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasensitive detection and characterization of molecules with infrared plasmonic metamaterials.
    Cheng F; Yang X; Gao J
    Sci Rep; 2015 Sep; 5():14327. PubMed ID: 26388404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.
    Wang S; Tay LL; Liu H
    Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculated thickness dependent plasmonic properties of gold nanobars in the visible to near-infrared light regime.
    Ghosh PK; Debu DT; French DA; Herzog JB
    PLoS One; 2017; 12(5):e0177463. PubMed ID: 28486554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dual-band in situ molecular spectroscopy using single-sized Al-disk perfect absorbers.
    Dao TD; Chen K; Nagao T
    Nanoscale; 2019 May; 11(19):9508-9517. PubMed ID: 31049510
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-enhanced infrared absorption with Si-doped InAsSb/GaSb nano-antennas.
    Milla MJ; Barho F; González-Posada F; Cerutti L; Charlot B; Bomers M; Neubrech F; Tournie E; Taliercio T
    Opt Express; 2017 Oct; 25(22):26651-26661. PubMed ID: 29092159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial extent of plasmonic enhancement of vibrational signals in the infrared.
    Neubrech F; Beck S; Glaser T; Hentschel M; Giessen H; Pucci A
    ACS Nano; 2014 Jun; 8(6):6250-8. PubMed ID: 24811345
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector.
    Wang L; He SJ; Wang KY; Luo HH; Hu JG; Yu YQ; Xie C; Wu CY; Luo LB
    Nanotechnology; 2018 Dec; 29(50):505203. PubMed ID: 30240364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Radiative Enhancement of Linear and Third-Order Vibrational Excitations by an Array of Infrared Plasmonic Antennas.
    Gandman A; Mackin RT; Cohn B; Rubtsov IV; Chuntonov L
    ACS Nano; 2018 May; 12(5):4521-4528. PubMed ID: 29727565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of the plasmonic near- and far-field resonance-energy shift on the enhancement of infrared vibrational signals.
    Vogt J; Huck C; Neubrech F; Toma A; Gerbert D; Pucci A
    Phys Chem Chem Phys; 2015 Sep; 17(33):21169-75. PubMed ID: 25516198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanometer-Scale Heterogeneous Interfacial Sapphire Wafer Bonding for Enabling Plasmonic-Enhanced Nanofluidic Mid-Infrared Spectroscopy.
    Xu J; Ren Z; Dong B; Liu X; Wang C; Tian Y; Lee C
    ACS Nano; 2020 Sep; 14(9):12159-12172. PubMed ID: 32812748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic coupling with most of the transition metals: a new family of broad band and near infrared nanoantennas.
    Manchon D; Lermé J; Zhang T; Mosset A; Jamois C; Bonnet C; Rye JM; Belarouci A; Broyer M; Pellarin M; Cottancin E
    Nanoscale; 2015 Jan; 7(3):1181-92. PubMed ID: 25488835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Organized Nanorod Arrays for Large-Area Surface-Enhanced Infrared Absorption.
    Giordano MC; Tzschoppe M; Barelli M; Vogt J; Huck C; Canepa F; Pucci A; Buatier de Mongeot F
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11155-11162. PubMed ID: 32049480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic Resonance Enhanced Polarization-Sensitive Photodetection by Black Phosphorus in Near Infrared.
    Venuthurumilli PK; Ye PD; Xu X
    ACS Nano; 2018 May; 12(5):4861-4867. PubMed ID: 29684270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shape effect on a single-nanoparticle-based plasmonic nanosensor.
    Shen H; Lu G; Zhang T; Liu J; Gu Y; Perriat P; Martini M; Tillement O; Gong Q
    Nanotechnology; 2013 Jul; 24(28):285502. PubMed ID: 23792456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.