These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 28693620)

  • 1. Development of an in silico method for the identification of subcomplexes involved in the biogenesis of multiprotein complexes in Saccharomyces cerevisiae.
    Glatigny A; Gambette P; Bourand-Plantefol A; Dujardin G; Mucchielli-Giorgi MH
    BMC Syst Biol; 2017 Jul; 11(1):67. PubMed ID: 28693620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in silico approach combined with in vivo experiments enables the identification of a new protein whose overexpression can compensate for specific respiratory defects in Saccharomyces cerevisiae.
    Glatigny A; Mathieu L; Herbert CJ; Dujardin G; Meunier B; Mucchielli-Giorgi MH
    BMC Syst Biol; 2011 Oct; 5():173. PubMed ID: 22027258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of functional modules in a PPI network by clique percolation clustering.
    Zhang S; Ning X; Zhang XS
    Comput Biol Chem; 2006 Dec; 30(6):445-51. PubMed ID: 17098476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogenesis of the yeast cytochrome bc1 complex.
    Zara V; Conte L; Trumpower BL
    Biochim Biophys Acta; 2009 Jan; 1793(1):89-96. PubMed ID: 18501197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A degree-distribution based hierarchical agglomerative clustering algorithm for protein complexes identification.
    Yu L; Gao L; Li K; Zhao Y; Chiu DK
    Comput Biol Chem; 2011 Oct; 35(5):298-307. PubMed ID: 22000801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dimerization of the yeast cytochrome bc1 complex is an early event and is independent of Rip1.
    Conte A; Papa B; Ferramosca A; Zara V
    Biochim Biophys Acta; 2015 May; 1853(5):987-95. PubMed ID: 25683140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-based assembly of protein complexes in yeast.
    Aloy P; Böttcher B; Ceulemans H; Leutwein C; Mellwig C; Fischer S; Gavin AC; Bork P; Superti-Furga G; Serrano L; Russell RB
    Science; 2004 Mar; 303(5666):2026-9. PubMed ID: 15044803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. From Function to Interaction: A New Paradigm for Accurately Predicting Protein Complexes Based on Protein-to-Protein Interaction Networks.
    Xu B; Guan J
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(4):616-27. PubMed ID: 26356332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization and analysis of the complexome network of Saccharomyces cerevisiae.
    Li SS; Xu K; Wilkins MR
    J Proteome Res; 2011 Oct; 10(10):4744-56. PubMed ID: 21842913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detecting Protein Complexes Based on Uncertain Graph Model.
    Zhao B; Wang J; Li M; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2014; 11(3):486-97. PubMed ID: 26356017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico pathway reconstruction: Iron-sulfur cluster biogenesis in Saccharomyces cerevisiae.
    Alves R; Sorribas A
    BMC Syst Biol; 2007 Jan; 1():10. PubMed ID: 17408500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identifying protein complexes based on node embeddings obtained from protein-protein interaction networks.
    Liu X; Yang Z; Sang S; Zhou Z; Wang L; Zhang Y; Lin H; Wang J; Xu B
    BMC Bioinformatics; 2018 Sep; 19(1):332. PubMed ID: 30241459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hybrid clustering algorithm for identifying modules in Protein-Protein Interaction networks.
    Yu L; Gao L; Sun PG
    Int J Data Min Bioinform; 2010; 4(5):600-15. PubMed ID: 21133044
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identifying protein complexes using hybrid properties.
    Chen L; Shi X; Kong X; Zeng Z; Cai YD
    J Proteome Res; 2009 Nov; 8(11):5212-8. PubMed ID: 19764809
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural organization of the 19S proteasome lid: insights from MS of intact complexes.
    Sharon M; Taverner T; Ambroggio XI; Deshaies RJ; Robinson CV
    PLoS Biol; 2006 Aug; 4(8):e267. PubMed ID: 16869714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of clustering algorithms for protein-protein interaction networks.
    Brohée S; van Helden J
    BMC Bioinformatics; 2006 Nov; 7():488. PubMed ID: 17087821
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of dynamic probabilistic protein interaction networks for protein complex identification.
    Zhang Y; Lin H; Yang Z; Wang J
    BMC Bioinformatics; 2016 Apr; 17(1):186. PubMed ID: 27117946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A density-based clustering approach for identifying overlapping protein complexes with functional preferences.
    Hu L; Chan KC
    BMC Bioinformatics; 2015 May; 16():174. PubMed ID: 26013799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of elongator subcomplex Elp4-6.
    Lin Z; Zhao W; Diao W; Xie X; Wang Z; Zhang J; Shen Y; Long J
    J Biol Chem; 2012 Jun; 287(25):21501-8. PubMed ID: 22556426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary Graph Clustering for Protein Complex Identification.
    He T; Chan KCC
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):892-904. PubMed ID: 28029628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.