These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 28693900)

  • 1. Biodegradation of pharmaceuticals and endocrine disruptors with oxygen, nitrate, manganese (IV), iron (III) and sulfate as electron acceptors.
    Schmidt N; Page D; Tiehm A
    J Contam Hydrol; 2017 Aug; 203():62-69. PubMed ID: 28693900
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of estrone, 17alpha-ethinylestradiol, and 17beta-estradiol in algae and duckweed-based wastewater treatment systems.
    Shi W; Wang L; Rousseau DP; Lens PN
    Environ Sci Pollut Res Int; 2010 May; 17(4):824-33. PubMed ID: 20213308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biological regeneration of manganese (IV) and iron (III) for anaerobic metal oxide-mediated removal of pharmaceuticals from water.
    Liu W; Langenhoff AAM; Sutton NB; Rijnaarts HHM
    Chemosphere; 2018 Oct; 208():122-130. PubMed ID: 29864703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment.
    Broséus R; Vincent S; Aboulfadl K; Daneshvar A; Sauvé S; Barbeau B; Prévost M
    Water Res; 2009 Oct; 43(18):4707-17. PubMed ID: 19695660
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laboratory degradation studies of four endocrine disruptors in two environmental media.
    Sarmah AK; Northcott GL
    Environ Toxicol Chem; 2008 Apr; 27(4):819-27. PubMed ID: 18333676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anaerobic biodegradation of pharmaceutical compounds coupled to dissimilatory manganese (IV) or iron (III) reduction.
    Liu W; Sutton NB; Rijnaarts HHM; Langenhoff AAM
    J Hazard Mater; 2020 Apr; 388():119361. PubMed ID: 30245001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcosm experiments to control anaerobic redox conditions when studying the fate of organic micropollutants in aquifer material.
    Barbieri M; Carrera J; Sanchez-Vila X; Ayora C; Cama J; Köck-Schulmeyer M; López de Alda M; Barceló D; Tobella Brunet J; Hernández García M
    J Contam Hydrol; 2011 Nov; 126(3-4):330-45. PubMed ID: 22115096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Processes for the elimination of estrogenic steroid hormones from water: a review.
    Silva CP; Otero M; Esteves V
    Environ Pollut; 2012 Jun; 165():38-58. PubMed ID: 22402263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidative removal of selected endocrine-disruptors and pharmaceuticals in drinking water treatment systems, and identification of degradation products of triclosan.
    Wu Q; Shi H; Adams CD; Timmons T; Ma Y
    Sci Total Environ; 2012 Nov; 439():18-25. PubMed ID: 23059968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photodegradation of common environmental pharmaceuticals and estrogens in river water.
    Lin AY; Reinhard M
    Environ Toxicol Chem; 2005 Jun; 24(6):1303-9. PubMed ID: 16117104
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial transformation of synthetic estrogen 17alpha-ethinylestradiol.
    Cajthaml T; Kresinová Z; Svobodová K; Sigler K; Rezanka T
    Environ Pollut; 2009 Dec; 157(12):3325-35. PubMed ID: 19625116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of calcium peroxide for removal of endocrine-disrupting compounds in waste activated sludge and promotion of sludge solubilization.
    Zhang A; Wang J; Li Y
    Water Res; 2015 Mar; 71():125-39. PubMed ID: 25613412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of Abiotic and Biotic Processes to the Aerobic Removal of Phenolic Endocrine-Disrupting Chemicals in a Simulated Estuarine Aquatic Environment.
    Yang L; Cheng Q; Tam NF; Lin L; Su W; Luan T
    Environ Sci Technol; 2016 Apr; 50(8):4324-34. PubMed ID: 26984110
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsubstituted metallophthalocyanine catalysts for the removal of endocrine disrupting compounds using H
    Kruid J; Fogel R; Limson J
    Environ Sci Pollut Res Int; 2018 Nov; 25(32):32346-32357. PubMed ID: 30229492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidation of atenolol, propranolol, carbamazepine and clofibric acid by a biological Fenton-like system mediated by the white-rot fungus Trametes versicolor.
    Marco-Urrea E; Radjenović J; Caminal G; Petrović M; Vicent T; Barceló D
    Water Res; 2010 Jan; 44(2):521-32. PubMed ID: 19850317
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biotransformation of 17α-methyltestosterone in sediment under different electron acceptor conditions.
    Homklin S; Ong SK; Limpiyakorn T
    Chemosphere; 2011 Mar; 82(10):1401-7. PubMed ID: 21194723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradation of endocrine disrupting compounds in harbour seawater and sediments.
    Robinson BJ; Hellou J
    Sci Total Environ; 2009 Oct; 407(21):5713-8. PubMed ID: 19665171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decay of endocrine-disrupting chemicals in aerobic and anoxic groundwater.
    Ying GG; Toze S; Hanna J; Yu XY; Dillon PJ; Kookana RS
    Water Res; 2008 Feb; 42(4-5):1133-41. PubMed ID: 17897695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The aqueous degradation of bisphenol A and steroid estrogens by ferrate.
    Li C; Li XZ; Graham N; Gao NY
    Water Res; 2008 Jan; 42(1-2):109-20. PubMed ID: 17681362
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic biodegradation of BTEX using Mn(IV) and Fe(III) as alternative electron acceptors.
    Villatoro-Monzón WR; Mesta-Howard AM; Razo-Flores E
    Water Sci Technol; 2003; 48(6):125-31. PubMed ID: 14640209
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.