These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
191 related articles for article (PubMed ID: 28694119)
1. Recurrent neural networks for classifying relations in clinical notes. Luo Y J Biomed Inform; 2017 Aug; 72():85-95. PubMed ID: 28694119 [TBL] [Abstract][Full Text] [Related]
2. Segment convolutional neural networks (Seg-CNNs) for classifying relations in clinical notes. Luo Y; Cheng Y; Uzuner Ö; Szolovits P; Starren J J Am Med Inform Assoc; 2018 Jan; 25(1):93-98. PubMed ID: 29025149 [TBL] [Abstract][Full Text] [Related]
3. Classifying relations in clinical narratives using segment graph convolutional and recurrent neural networks (Seg-GCRNs). Li Y; Jin R; Luo Y J Am Med Inform Assoc; 2019 Mar; 26(3):262-268. PubMed ID: 30590613 [TBL] [Abstract][Full Text] [Related]
4. Entity recognition from clinical texts via recurrent neural network. Liu Z; Yang M; Wang X; Chen Q; Tang B; Wang Z; Xu H BMC Med Inform Decis Mak; 2017 Jul; 17(Suppl 2):67. PubMed ID: 28699566 [TBL] [Abstract][Full Text] [Related]
5. BO-LSTM: classifying relations via long short-term memory networks along biomedical ontologies. Lamurias A; Sousa D; Clarke LA; Couto FM BMC Bioinformatics; 2019 Jan; 20(1):10. PubMed ID: 30616557 [TBL] [Abstract][Full Text] [Related]
6. Cohort selection for clinical trials using hierarchical neural network. Xiong Y; Shi X; Chen S; Jiang D; Tang B; Wang X; Chen Q; Yan J J Am Med Inform Assoc; 2019 Nov; 26(11):1203-1208. PubMed ID: 31305921 [TBL] [Abstract][Full Text] [Related]
7. Integrating shortest dependency path and sentence sequence into a deep learning framework for relation extraction in clinical text. Li Z; Yang Z; Shen C; Xu J; Zhang Y; Xu H BMC Med Inform Decis Mak; 2019 Jan; 19(Suppl 1):22. PubMed ID: 30700301 [TBL] [Abstract][Full Text] [Related]
8. Temporal indexing of medical entity in Chinese clinical notes. Liu Z; Wang X; Chen Q; Tang B; Xu H BMC Med Inform Decis Mak; 2019 Jan; 19(Suppl 1):17. PubMed ID: 30700331 [TBL] [Abstract][Full Text] [Related]
9. Identifying relations of medications with adverse drug events using recurrent convolutional neural networks and gradient boosting. Yang X; Bian J; Fang R; Bjarnadottir RI; Hogan WR; Wu Y J Am Med Inform Assoc; 2020 Jan; 27(1):65-72. PubMed ID: 31504605 [TBL] [Abstract][Full Text] [Related]
10. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes. Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070 [TBL] [Abstract][Full Text] [Related]
11. Recurrent neural networks with segment attention and entity description for relation extraction from clinical texts. Li Z; Yang J; Gou X; Qi X Artif Intell Med; 2019 Jun; 97():9-18. PubMed ID: 31202398 [TBL] [Abstract][Full Text] [Related]
12. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing. Han S; Zhang RF; Shi L; Richie R; Liu H; Tseng A; Quan W; Ryan N; Brent D; Tsui FR J Biomed Inform; 2022 Mar; 127():103984. PubMed ID: 35007754 [TBL] [Abstract][Full Text] [Related]
13. Identification of patients' smoking status using an explainable AI approach: a Danish electronic health records case study. Ebrahimi A; Henriksen MBH; Brasen CL; Hilberg O; Hansen TF; Jensen LH; Peimankar A; Wiil UK BMC Med Res Methodol; 2024 May; 24(1):114. PubMed ID: 38760718 [TBL] [Abstract][Full Text] [Related]
14. Identifying health related occupations of Twitter users through word embedding and deep neural networks. Zainab K; Srivastava G; Mago V BMC Bioinformatics; 2022 Sep; 22(Suppl 10):630. PubMed ID: 36171569 [TBL] [Abstract][Full Text] [Related]
15. Adverse Drug Event Detection from Electronic Health Records Using Hierarchical Recurrent Neural Networks with Dual-Level Embedding. Wunnava S; Qin X; Kakar T; Sen C; Rundensteiner EA; Kong X Drug Saf; 2019 Jan; 42(1):113-122. PubMed ID: 30649736 [TBL] [Abstract][Full Text] [Related]
16. 2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text. Uzuner Ö; South BR; Shen S; DuVall SL J Am Med Inform Assoc; 2011; 18(5):552-6. PubMed ID: 21685143 [TBL] [Abstract][Full Text] [Related]
17. De-identification of Clinical Text via Bi-LSTM-CRF with Neural Language Models. Tang B; Jiang D; Chen Q; Wang X; Yan J; Shen Y AMIA Annu Symp Proc; 2019; 2019():857-863. PubMed ID: 32308882 [TBL] [Abstract][Full Text] [Related]
18. Mining e-cigarette adverse events in social media using Bi-LSTM recurrent neural network with word embedding representation. Xie J; Liu X; Dajun Zeng D J Am Med Inform Assoc; 2018 Jan; 25(1):72-80. PubMed ID: 28505280 [TBL] [Abstract][Full Text] [Related]
19. Extracting medications and associated adverse drug events using a natural language processing system combining knowledge base and deep learning. Chen L; Gu Y; Ji X; Sun Z; Li H; Gao Y; Huang Y J Am Med Inform Assoc; 2020 Jan; 27(1):56-64. PubMed ID: 31591641 [TBL] [Abstract][Full Text] [Related]
20. Mining fall-related information in clinical notes: Comparison of rule-based and novel word embedding-based machine learning approaches. Topaz M; Murga L; Gaddis KM; McDonald MV; Bar-Bachar O; Goldberg Y; Bowles KH J Biomed Inform; 2019 Feb; 90():103103. PubMed ID: 30639392 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]