These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 2869429)

  • 1. EEG frequency patterns in the cat prepyriform cortex during sleep and waking.
    Willey TJ; Adey WR; Maeda G; Will AD; Tosk J
    Neurol Res; 1985 Dec; 7(4):182-9. PubMed ID: 2869429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A new method to estimate time delays between EEG signals applied to beta activity of the olfactory cortical areas.
    Boeijinga PH; Lopes da Silva FH
    Electroencephalogr Clin Neurophysiol; 1989 Sep; 73(3):198-205. PubMed ID: 2475324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hypothalmic influences on the electrical activity of the olfactory pathway.
    Aguilar-Barturoni HU; Guevara-aguilar R; Aréchiga H; Alcocer-Cuarón C
    Brain Res Bull; 1976; 1(3):263-72. PubMed ID: 974807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative study on the behavioral and EEG changes induced by diazepam, buspirone and a novel anxioselective anxiolytic, DN-2327, in the cat.
    Hashimoto T; Hamada C; Wada T; Fukuda N
    Neuropsychobiology; 1992; 26(1-2):89-99. PubMed ID: 1361973
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counterpointing the functional role of the forebrain and of the brainstem in the control of the sleep-waking system.
    Villablanca JR
    J Sleep Res; 2004 Sep; 13(3):179-208. PubMed ID: 15339255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power density spectra of cortical EEG of the cat in sleep and waking.
    Bronzino JD; Brusseau JN; Stern WC; Morgane PJ
    Electroencephalogr Clin Neurophysiol; 1973 Aug; 35(2):187-91. PubMed ID: 4124611
    [No Abstract]   [Full Text] [Related]  

  • 7. Spatiotemporal analysis of prepyriform, visual, auditory, and somesthetic surface EEGs in trained rabbits.
    Barrie JM; Freeman WJ; Lenhart MD
    J Neurophysiol; 1996 Jul; 76(1):520-39. PubMed ID: 8836241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Olfactory evoked potentials in the rat.
    Inokuchi A; Kimmelman CP; Wang HE; Snow JB
    Laryngoscope; 1986 Oct; 96(10):1107-11. PubMed ID: 3762286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antidromic units in the prepyriform cortex driven by olfactory peduncular volleys.
    Willey TJ; Maeda G; Rafuse D
    Brain Res; 1975 Jul; 92(1):132-6. PubMed ID: 1174940
    [No Abstract]   [Full Text] [Related]  

  • 10. CNS arousal and neurobehavioral performance in a short-term sleep restriction paradigm.
    Cote KA; Milner CE; Smith BA; Aubin AJ; Greason TA; Cuthbert BP; Wiebe S; Duffus SE
    J Sleep Res; 2009 Sep; 18(3):291-303. PubMed ID: 19552702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aspects of sleep-wakefulness architecture by computer analysis in cats.
    Granger P; Depoortere H
    Neuropsychobiology; 1988; 19(4):212-6. PubMed ID: 3247018
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the presence of a peculiar alpha rhythm in the olfactory tubercle of waking armadillos.
    García Samartino L; Affanni JM; Casanave EB; Ferrari R; Iodice O
    Electroencephalogr Clin Neurophysiol; 1987 Feb; 66(2):185-90. PubMed ID: 2431883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of CNS activation versus EEG arousal during sleep on heart rate response and daytime tests.
    Guilleminault C; Abad VC; Philip P; Stoohs R
    Clin Neurophysiol; 2006 Apr; 117(4):731-9. PubMed ID: 16458068
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A search for olfactory receiving areas in the cerebral cortex of cats.
    Motokizawa F; Ino Y
    Neuroscience; 1981; 6(1):39-46. PubMed ID: 7219704
    [No Abstract]   [Full Text] [Related]  

  • 15. Sleep-waking states develop independently in the isolated forebrain and brain stem following early postnatal midbrain transection in cats.
    Villablanca JR; de Andrés I; Olmstead CE
    Neuroscience; 2001; 106(4):717-31. PubMed ID: 11682158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Asymmetry and symmetry in brain waves from dolphin left and right hemispheres: some observations after anesthesia, during quiescent hanging behavior, and during visual obstruction.
    Ridgway SH
    Brain Behav Evol; 2002; 60(5):265-74. PubMed ID: 12476053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic changes of gamma activities of somatic cortical evoked potentials during wake-sleep states in rats.
    Shaw FZ; Chew JH
    Brain Res; 2003 Sep; 983(1-2):152-61. PubMed ID: 12914976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-frequency components of the rat electrocorticogram are modulated by the vigilance states.
    Franken P; Dijk DJ; Tobler I; Borbély AA
    Neurosci Lett; 1994 Feb; 167(1-2):89-92. PubMed ID: 8177536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [A study of complexity and power spectrum of cortical EEG and hippocampal potential in rats under different behavioral states].
    Feng ZY; Zheng XX
    Space Med Med Eng (Beijing); 2002 Aug; 15(4):276-80. PubMed ID: 12422874
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of changing levels of arousal on the spontaneous activity of cortical neurones: I. Sleep and wakefulness.
    Webb AC
    Proc R Soc Lond B Biol Sci; 1976 Oct; 194(1115):225-37. PubMed ID: 11487
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.