BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 28694441)

  • 21. Critical role of sulfenic acid formation of thiols in the inactivation of glyceraldehyde-3-phosphate dehydrogenase by nitric oxide.
    Ishii T; Sunami O; Nakajima H; Nishio H; Takeuchi T; Hata F
    Biochem Pharmacol; 1999 Jul; 58(1):133-43. PubMed ID: 10403526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogen peroxide induces association between glyceraldehyde 3-phosphate dehydrogenase and phospholipase D2 to facilitate phospholipase D2 activation in PC12 cells.
    Kim JH; Lee S; Park JB; Lee SD; Kim JH; Ha SH; Hasumi K; Endo A; Suh PG; Ryu SH
    J Neurochem; 2003 Jun; 85(5):1228-36. PubMed ID: 12753082
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Glyceraldehyde phosphate dehydrogenase oxidation during cardiac ischemia and reperfusion.
    Eaton P; Wright N; Hearse DJ; Shattock MJ
    J Mol Cell Cardiol; 2002 Nov; 34(11):1549-60. PubMed ID: 12431453
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [The biological significance of oxidative modifications of cysteine residues in proteins illustrated with the example of glyceraldehyde-3-phosphate dehydrogenase].
    Rodacka A; Gerszon J; Puchała M
    Postepy Hig Med Dosw (Online); 2014 Mar; 68():280-90. PubMed ID: 24662796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evidence for thiol/disulfide exchange reactions between tubulin and glyceraldehyde-3-phosphate dehydrogenase.
    Landino LM; Hagedorn TD; Kennett KL
    Cytoskeleton (Hoboken); 2014 Dec; 71(12):707-18. PubMed ID: 25545749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Carbon dioxide/bicarbonate is required for sensitive inactivation of mammalian glyceraldehyde-3-phosphate dehydrogenase by hydrogen peroxide.
    Winterbourn CC; Peskin AV; Kleffmann T; Radi R; Pace PE
    Proc Natl Acad Sci U S A; 2023 May; 120(18):e2221047120. PubMed ID: 37098065
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Corynebacterium glutamicum methionine sulfoxide reductase A uses both mycoredoxin and thioredoxin for regeneration and oxidative stress resistance.
    Si M; Zhang L; Chaudhry MT; Ding W; Xu Y; Chen C; Akbar A; Shen X; Liu SJ
    Appl Environ Microbiol; 2015 Apr; 81(8):2781-96. PubMed ID: 25681179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro.
    Jarosz AP; Wei W; Gauld JW; Auld J; Özcan F; Aslan M; Mutus B
    Free Radic Biol Med; 2015 Dec; 89():512-21. PubMed ID: 26453916
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The GAPDH redox switch safeguards reductive capacity and enables survival of stressed tumour cells.
    Talwar D; Miller CG; Grossmann J; Szyrwiel L; Schwecke T; Demichev V; Mikecin Drazic AM; Mayakonda A; Lutsik P; Veith C; Milsom MD; Müller-Decker K; Mülleder M; Ralser M; Dick TP
    Nat Metab; 2023 Apr; 5(4):660-676. PubMed ID: 37024754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The aldehyde dehydrogenase AldA contributes to the hypochlorite defense and is redox-controlled by protein S-bacillithiolation in Staphylococcus aureus.
    Imber M; Loi VV; Reznikov S; Fritsch VN; Pietrzyk-Brzezinska AJ; Prehn J; Hamilton C; Wahl MC; Bronowska AK; Antelmann H
    Redox Biol; 2018 May; 15():557-568. PubMed ID: 29433022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional characterization of a mycothiol peroxidase in Corynebacterium glutamicum that uses both mycoredoxin and thioredoxin reducing systems in the response to oxidative stress.
    Si M; Xu Y; Wang T; Long M; Ding W; Chen C; Guan X; Liu Y; Wang Y; Shen X; Liu SJ
    Biochem J; 2015 Jul; 469(1):45-57. PubMed ID: 25891483
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stable integration of the Mrx1-roGFP2 biosensor to monitor dynamic changes of the mycothiol redox potential in Corynebacterium glutamicum.
    Tung QN; Loi VV; Busche T; Nerlich A; Mieth M; Milse J; Kalinowski J; Hocke AC; Antelmann H
    Redox Biol; 2019 Jan; 20():514-525. PubMed ID: 30481728
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graded Response of the Multifunctional 2-Cysteine Peroxiredoxin, CgPrx, to Increasing Levels of Hydrogen Peroxide in Corynebacterium glutamicum.
    Si M; Wang T; Pan J; Lin J; Chen C; Wei Y; Lu Z; Wei G; Shen X
    Antioxid Redox Signal; 2017 Jan; 26(1):1-14. PubMed ID: 27324811
    [TBL] [Abstract][Full Text] [Related]  

  • 34. CP12-mediated protection of Calvin-Benson cycle enzymes from oxidative stress.
    Marri L; Thieulin-Pardo G; Lebrun R; Puppo R; Zaffagnini M; Trost P; Gontero B; Sparla F
    Biochimie; 2014 Feb; 97():228-37. PubMed ID: 24211189
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The active site cysteine of the proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-induced aggregation and cell death.
    Nakajima H; Amano W; Fujita A; Fukuhara A; Azuma YT; Hata F; Inui T; Takeuchi T
    J Biol Chem; 2007 Sep; 282(36):26562-74. PubMed ID: 17613523
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mycothiol/mycoredoxin 1-dependent reduction of the peroxiredoxin AhpE from Mycobacterium tuberculosis.
    Hugo M; Van Laer K; Reyes AM; Vertommen D; Messens J; Radi R; Trujillo M
    J Biol Chem; 2014 Feb; 289(8):5228-39. PubMed ID: 24379404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regulation of plant cytosolic glyceraldehyde 3-phosphate dehydrogenase isoforms by thiol modifications.
    Holtgrefe S; Gohlke J; Starmann J; Druce S; Klocke S; Altmann B; Wojtera J; Lindermayr C; Scheibe R
    Physiol Plant; 2008 Jun; 133(2):211-28. PubMed ID: 18298409
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Products of S-nitrosylation of glyceraldehyde-3-phosphate dehydrogenase: Relation between S-nitrosylation and oxidation.
    Schmalhausen EV; Medvedeva MV; Serebryakova MV; Chagovets VV; Muronetz VI
    Biochim Biophys Acta Gen Subj; 2022 Jan; 1866(1):130032. PubMed ID: 34627945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The interactions of 9,10-phenanthrenequinone with glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a potential site for toxic actions.
    Rodriguez CE; Fukuto JM; Taguchi K; Froines J; Cho AK
    Chem Biol Interact; 2005 Jun; 155(1-2):97-110. PubMed ID: 15950210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase in neurodegenerative processes and the role of low molecular weight compounds in counteracting its aggregation and nuclear translocation.
    Gerszon J; Rodacka A
    Ageing Res Rev; 2018 Dec; 48():21-31. PubMed ID: 30254002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.