These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 28694937)
1. Semiconductor-driven "turn-off" surface-enhanced Raman scattering spectroscopy: application in selective determination of chromium(vi) in water. Ji W; Wang Y; Tanabe I; Han X; Zhao B; Ozaki Y Chem Sci; 2015 Jan; 6(1):342-348. PubMed ID: 28694937 [TBL] [Abstract][Full Text] [Related]
2. Highly sensitive surface-enhanced Raman scattering detection of hexavalent chromium based on hollow sea urchin-like TiO Zhou W; Yin BC; Ye BC Biosens Bioelectron; 2017 Jan; 87():187-194. PubMed ID: 27551999 [TBL] [Abstract][Full Text] [Related]
3. Mesoporous semiconducting TiO Yang L; Yin D; Shen Y; Yang M; Li X; Han X; Jiang X; Zhao B Phys Chem Chem Phys; 2017 Jul; 19(28):18731-18738. PubMed ID: 28696460 [TBL] [Abstract][Full Text] [Related]
4. Highly Efficient Photoinduced Enhanced Raman Spectroscopy (PIERS) from Plasmonic Nanoparticles Decorated 3D Semiconductor Arrays for Ultrasensitive, Portable, and Recyclable Detection of Organic Pollutants. Zhang M; Sun H; Chen X; Yang J; Shi L; Chen T; Bao Z; Liu J; Wu Y ACS Sens; 2019 Jun; 4(6):1670-1681. PubMed ID: 31117365 [TBL] [Abstract][Full Text] [Related]
5. Charge-Transfer Process in Surface-Enhanced Raman Scattering Based on Energy Level Locations of Rare-Earth Nd Zhao Z; Zhao X; Zhang M; Sun X Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443894 [TBL] [Abstract][Full Text] [Related]
6. Mechanism of Surface-Enhanced Raman Scattering Based on 3D Graphene-TiO Zheng T; Feng E; Wang Z; Gong X; Tian Y ACS Appl Mater Interfaces; 2017 Oct; 9(42):36596-36605. PubMed ID: 28980796 [TBL] [Abstract][Full Text] [Related]
7. Plasmonic 3D Semiconductor-Metal Nanopore Arrays for Reliable Surface-Enhanced Raman Scattering Detection and In-Site Catalytic Reaction Monitoring. Zhang M; Chen T; Liu Y; Zhang J; Sun H; Yang J; Zhu J; Liu J; Wu Y ACS Sens; 2018 Nov; 3(11):2446-2454. PubMed ID: 30335972 [TBL] [Abstract][Full Text] [Related]
8. A sensitive surface-enhanced resonance Raman scattering sensor with bifunctional negatively charged gold nanoparticles for the determination of Cr(VI). Xu G; Guo N; Zhang Q; Wang T; Song P; Xia L Sci Total Environ; 2022 Jul; 830():154598. PubMed ID: 35307417 [TBL] [Abstract][Full Text] [Related]
9. A Ag synchronously deposited and doped TiO Yang L; Sang Q; Du J; Yang M; Li X; Shen Y; Han X; Jiang X; Zhao B Phys Chem Chem Phys; 2018 Jun; 20(22):15149-15157. PubMed ID: 29789850 [TBL] [Abstract][Full Text] [Related]
10. Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement. Wang X; Zhang E; Shi H; Tao Y; Ren X Analyst; 2022 Mar; 147(7):1257-1272. PubMed ID: 35253817 [TBL] [Abstract][Full Text] [Related]
11. Sensitive surface-enhanced Raman scattering of TiO Zhao X; Zhang W; Peng C; Liang Y; Wang W J Colloid Interface Sci; 2017 Dec; 507():370-377. PubMed ID: 28806656 [TBL] [Abstract][Full Text] [Related]
12. Metal-free SERS substrate based on rGO-TiO Jiang X; Sang Q; Yang M; Du J; Wang W; Yang L; Han X; Zhao B Phys Chem Chem Phys; 2019 Jun; 21(24):12850-12858. PubMed ID: 31179479 [TBL] [Abstract][Full Text] [Related]
13. Crystal-Amorphous Core-Shell Structure Synergistically Enabling TiO Lin J; Ren W; Li A; Yao C; Chen T; Ma X; Wang X; Wu A ACS Appl Mater Interfaces; 2020 Jan; 12(4):4204-4211. PubMed ID: 31789506 [TBL] [Abstract][Full Text] [Related]
14. Speciation Analysis of Cr(VI) and Cr(III) in Water with Surface-Enhanced Raman Spectroscopy. Dvoynenko O; Lo SL; Chen YJ; Chen GW; Tsai HM; Wang YL; Wang JK ACS Omega; 2021 Jan; 6(3):2052-2059. PubMed ID: 33521444 [TBL] [Abstract][Full Text] [Related]
15. Study of charge transfer effect in Surface-Enhanced Raman scattering (SERS) by using Antimony-doped tin oxide (ATO) nanoparticles as substrates with tunable optical band gaps and free charge carrier densities. Zhang M; Wang Y; Ma Y; Wang X; Zhao B; Ruan W Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 264():120288. PubMed ID: 34455383 [TBL] [Abstract][Full Text] [Related]
16. Synergizing the multiple plasmon resonance coupling and quantum effects to obtain enhanced SERS and PEC performance simultaneously on a noble metal-semiconductor substrate. Yang T; Liu W; Li L; Chen J; Hou X; Chou KC Nanoscale; 2017 Feb; 9(6):2376-2384. PubMed ID: 28145543 [TBL] [Abstract][Full Text] [Related]
17. Colloidal carbon soot templated TiO Malik U; Mazur M; Gudi RD; Mandaliya DD; Selvakannan PR; Bhargava SK J Colloid Interface Sci; 2024 Oct; 671():325-335. PubMed ID: 38815369 [TBL] [Abstract][Full Text] [Related]
18. Noble metal-free SERS: mechanisms and applications. Jin S; Zhang D; Yang B; Guo S; Chen L; Jung YM Analyst; 2023 Dec; 149(1):11-28. PubMed ID: 38051259 [TBL] [Abstract][Full Text] [Related]
19. Ultrasensitive surface-enhanced Raman scattering sensing of Cr(VI) with a Au@Ag nano-sea urchin paper-tip substrate. Xu R; Tan L; Xu W; Xiao L; Zheng Y; Li Y; Lou Y Chem Commun (Camb); 2024 Nov; 60(88):12872-12875. PubMed ID: 39403759 [TBL] [Abstract][Full Text] [Related]
20. Alizarin Dye based ultrasensitive plasmonic SERS probe for trace level Cadmium detection in drinking water. Dasary SS; Zones YK; Barnes SL; Ray PC; Singh AK Sens Actuators B Chem; 2016 Mar; 224():65-72. PubMed ID: 26770012 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]