These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 28695410)

  • 1. Microscale Gaseous Slip Flow in the Insect Trachea and Tracheoles.
    Simelane SM; Abelman S; Duncan FD
    Acta Biotheor; 2017 Sep; 65(3):211-231. PubMed ID: 28695410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gas Exchange Models for a Flexible Insect Tracheal System.
    Simelane SM; Abelman S; Duncan FD
    Acta Biotheor; 2016 Jun; 64(2):161-96. PubMed ID: 27209375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analytical solution to predicting gaseous mass flow rates of microchannels in a wide range of Knudsen numbers.
    Lv Q; Liu X; Wang E; Wang S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):013007. PubMed ID: 23944549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective pumping in a network: insect-style microscale flow transport.
    Aboelkassem Y; Staples AE
    Bioinspir Biomim; 2013 Jun; 8(2):026004. PubMed ID: 23538838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroscopic description of nonequilibrium effects in thermal transpiration flows in annular microchannels.
    Taheri P; Bahrami M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036311. PubMed ID: 23031017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A method to determine zeta potential and Navier slip coefficient of microchannels.
    Park HM
    J Colloid Interface Sci; 2010 Jul; 347(1):132-41. PubMed ID: 20362996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extension of the Helmholtz-Smoluchowski velocity to the hydrophobic microchannels with velocity slip.
    Park HM; Kim TW
    Lab Chip; 2009 Jan; 9(2):291-6. PubMed ID: 19107287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analytical Solution of the Time-Dependent Microfluidic Poiseuille Flow in Rectangular Channel Cross-Sections and its Numerical Implementation in Microsoft Excel.
    Risch P; Helmer D; Kotz F; Rapp BE
    Biosensors (Basel); 2019 May; 9(2):. PubMed ID: 31137723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical Study of Nanoparticle Deposition in a Gaseous Microchannel under the Influence of Various Forces.
    Bao F; Hao H; Yin Z; Tu C
    Micromachines (Basel); 2021 Jan; 12(1):. PubMed ID: 33401507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations.
    Li Q; He YL; Wang Y; Tao WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Nov; 76(5 Pt 2):056705. PubMed ID: 18233788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discrete unified gas kinetic scheme for all Knudsen number flows. II. Thermal compressible case.
    Guo Z; Wang R; Xu K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):033313. PubMed ID: 25871252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gas-kinetic schemes for direct numerical simulations of compressible homogeneous turbulence.
    Liao W; Peng Y; Luo LS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 2):046702. PubMed ID: 19905477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental investigation and computational modeling of hydrodynamics in bifurcating microchannels.
    Janakiraman V; Sastry S; Kadambi JR; Baskaran H
    Biomed Microdevices; 2008 Jun; 10(3):355-65. PubMed ID: 18175219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial instability of compressible slip flows in a microchannel.
    He A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053006. PubMed ID: 23767619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical analysis of field-modulated electroosmotic flows in microchannels with arbitrary numbers and configurations of discrete electrodes.
    Chao K; Chen B; Wu J
    Biomed Microdevices; 2010 Dec; 12(6):959-66. PubMed ID: 20668948
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geometric pumping in autophoretic channels.
    Michelin S; Montenegro-Johnson TD; De Canio G; Lobato-Dauzier N; Lauga E
    Soft Matter; 2015 Aug; 11(29):5804-11. PubMed ID: 26000567
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting enhanced mass flow rates in gas microchannels using nonkinetic models.
    Dadzie SK; Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Sep; 86(3 Pt 2):036318. PubMed ID: 23031024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lattice Boltzmann simulation of rarefied gas flows in microchannels.
    Zhang Y; Qin R; Emerson DR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):047702. PubMed ID: 15903829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.