BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28695480)

  • 1. Finger-attachment device for the feedback of gripping and pulling force in a manipulating system for brain tumor resection.
    Chinbe H; Yoneyama T; Watanabe T; Miyashita K; Nakada M
    Int J Comput Assist Radiol Surg; 2018 Jan; 13(1):3-12. PubMed ID: 28695480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Force-detecting gripper and force feedback system for neurosurgery applications.
    Yoneyama T; Watanabe T; Kagawa H; Hamada J; Hayashi Y; Nakada M
    Int J Comput Assist Radiol Surg; 2013 Sep; 8(5):819-29. PubMed ID: 23315003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force feedback in a piezoelectric linear actuator for neurosurgery.
    De Lorenzo D; De Momi E; Dyagilev I; Manganelli R; Formaglio A; Prattichizzo D; Shoham M; Ferrigno G
    Int J Med Robot; 2011 Sep; 7(3):268-75. PubMed ID: 21538769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Force detecting gripper and flexible micro manipulator for neurosurgery.
    Yoneyama T; Watanabe T; Kagawa H; Hamada J; Hayashi Y; Nakada M
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():6695-9. PubMed ID: 22255875
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Method for the Detection of Tumor Blood Vessels in Neurosurgery Using a Gripping Force Feedback System.
    Yokota H; Yoneyama T; Watanabe T; Sasagawa Y; Nakada M
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31775316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hand-tool-tissue interaction forces in neurosurgery for haptic rendering.
    Aggravi M; De Momi E; DiMeco F; Cardinale F; Casaceli G; Riva M; Ferrigno G; Prattichizzo D
    Med Biol Eng Comput; 2016 Aug; 54(8):1229-41. PubMed ID: 26718558
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hand-held multi-DOF robotic forceps for neurosurgery designed for dexterous manipulation in deep and narrow space.
    Okubo T; Harada K; Fujii M; Tanaka S; Ishimaru T; Iwanaka T; Nakatomi H; Sora S; Morita A; Sugita N; Mitsuishi M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6868-71. PubMed ID: 25571574
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and characteristics evaluation of a novel teleoperated robotic catheterization system with force feedback for vascular interventional surgery.
    Guo J; Guo S; Yu Y
    Biomed Microdevices; 2016 Oct; 18(5):76. PubMed ID: 27499092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automating neurosurgical tumor resection surgery: Volumetric laser ablation of cadaveric porcine brain with integrated surface mapping.
    Ross WA; Hill WM; Hoang KB; Laarakker AS; Mann BP; Codd PJ
    Lasers Surg Med; 2018 Dec; 50(10):1017-1024. PubMed ID: 29984837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A telerobotic haptic system for minimally invasive stereotactic neurosurgery.
    Rossi A; Trevisani A; Zanotto V
    Int J Med Robot; 2005 Jan; 1(2):64-75. PubMed ID: 17518380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force feedback controls of multi-gripper robotic endovascular intervention: design, prototype, and experiments.
    Wang K; Liu J; Yan W; Lu Q; Nie S
    Int J Comput Assist Radiol Surg; 2021 Jan; 16(1):179-192. PubMed ID: 33089435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of Gripping Force on a Master Controller During Simulated Robotic Surgery.
    Mishima T; Yoshida K; Takayasu K; Watanabe M; Kinoshita H; Matsuda T
    J Endourol; 2019 Oct; 33(10):802-808. PubMed ID: 31115247
    [No Abstract]   [Full Text] [Related]  

  • 15. Operating force information on-line acquisition of a novel slave manipulator for vascular interventional surgery.
    Zhao Y; Guo S; Xiao N; Wang Y; Li Y; Jiang Y
    Biomed Microdevices; 2018 Apr; 20(2):33. PubMed ID: 29610988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and modeling of a high-load soft robotic gripper inspired by biological winding.
    Li H; Yao J; Zhou P; Zhao W; Xu Y; Zhao Y
    Bioinspir Biomim; 2020 Feb; 15(2):026006. PubMed ID: 31822642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying force and positional frequency bands in neurosurgical tasks.
    Maddahi Y; Ghasemloonia A; Zareinia K; Sepehri N; Sutherland GR
    J Robot Surg; 2016 Jun; 10(2):97-102. PubMed ID: 26914651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A cable-driven parallel manipulator with force sensing capabilities for high-accuracy tissue endomicroscopy.
    Miyashita K; Oude Vrielink T; Mylonas G
    Int J Comput Assist Radiol Surg; 2018 May; 13(5):659-669. PubMed ID: 29516353
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance evaluation of haptic hand-controllers in a robot-assisted surgical system.
    Zareinia K; Maddahi Y; Ng C; Sepehri N; Sutherland GR
    Int J Med Robot; 2015 Dec; 11(4):486-501. PubMed ID: 25624185
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tumor retractor: a simple and novel instrument for brain tumor surgery.
    Lim J; Sung KS; Hwang SJ; Chun DH; Cho KG
    World J Surg Oncol; 2020 Feb; 18(1):37. PubMed ID: 32054516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.