BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 28695480)

  • 21. The bio-gripper: a fluid-driven micro-manipulator of living tissue constructs for additive bio-manufacturing.
    Ip BC; Cui F; Tripathi A; Morgan JR
    Biofabrication; 2016 May; 8(2):025015. PubMed ID: 27221320
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use of retractor with stealth stereotactic system.
    Ross DA
    Neurosurgery; 2010 Jul; 67(1):221. PubMed ID: 20559075
    [No Abstract]   [Full Text] [Related]  

  • 23. Surgical bedside master console for neurosurgical robotic system.
    Arata J; Kenmotsu H; Takagi M; Hori T; Miyagi T; Fujimoto H; Kajita Y; Hayashi Y; Chinzei K; Hashizume M
    Int J Comput Assist Radiol Surg; 2013 Jan; 8(1):75-86. PubMed ID: 22585461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neurosurgical robotic system for brain tumor removal.
    Arata J; Tada Y; Kozuka H; Wada T; Saito Y; Ikedo N; Hayashi Y; Fujii M; Kajita Y; Mizuno M; Wakabayashi T; Yoshida J; Fujimoto H
    Int J Comput Assist Radiol Surg; 2011 May; 6(3):375-85. PubMed ID: 20625847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive Self-Sealing Suction-Based Soft Robotic Gripper.
    Song S; Drotlef DM; Son D; Koivikko A; Sitti M
    Adv Sci (Weinh); 2021 Sep; 8(17):e2100641. PubMed ID: 34218533
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extended physiologic taction: design and evaluation of a proportional force feedback system.
    Meek SG; Jacobsen SC; Goulding PP
    J Rehabil Res Dev; 1989; 26(3):53-62. PubMed ID: 2666644
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Virtual wall-based haptic-guided teleoperated surgical robotic system for single-port brain tumor removal surgery.
    Seung S; Choi H; Jang J; Kim YS; Park JO; Park S; Ko SY
    Proc Inst Mech Eng H; 2017 Jan; 231(1):3-19. PubMed ID: 27856790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A bio-inspired expandable soft suction gripper for minimal invasive surgery-an explorative design study.
    Kortman VG; Sakes A; Endo G; Breedveld P
    Bioinspir Biomim; 2023 May; 18(4):. PubMed ID: 37059112
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Individual finger contribution in submaximal voluntary contraction of gripping.
    Kong YK; Lee KS; Kim DM; Jung MC
    Ergonomics; 2011 Nov; 54(11):1072-80. PubMed ID: 22026950
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optical needle endoscope for safe and precise stereotactically guided biopsy sampling in neurosurgery.
    Göbel W; Brucker D; Kienast Y; Johansson A; Kniebühler G; Rühm A; Eigenbrod S; Fischer S; Goetz M; Kreth FW; Ehrhardt A; Stepp H; Irion KM; Herms J
    Opt Express; 2012 Nov; 20(24):26117-26. PubMed ID: 23187467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Frameless robotic stereotactic biopsies: a consecutive series of 100 cases.
    Lefranc M; Capel C; Pruvot-Occean AS; Fichten A; Desenclos C; Toussaint P; Le Gars D; Peltier J
    J Neurosurg; 2015 Feb; 122(2):342-52. PubMed ID: 25380111
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluation of hook handles in a pulling task.
    Kong YK; Freivalds A; Kim SK
    Int J Occup Saf Ergon; 2005; 11(3):303-13. PubMed ID: 16219158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Frameless stereotactic neurosurgery: two steps towards the Holy Grail of surgical navigation.
    Eljamel MS
    Stereotact Funct Neurosurg; 1999; 72(2-4):125-8. PubMed ID: 10853063
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and development of a non-contact robotic gripper for tissue manipulation in minimally invasive surgery.
    Ertürk Ş; Erzincanlı F
    Acta Biomed; 2020 Sep; 91(3):e2020071. PubMed ID: 32921769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Manipulation of a master manipulator with a combined-grip-handle of pinch and power grips.
    Jeong S; Tadano K
    Int J Med Robot; 2020 Apr; 16(2):e2065. PubMed ID: 31830365
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of the performance of experienced and novice surgeons: measurement of gripping force during laparoscopic surgery performed on pigs using forceps with pressure sensors.
    Araki A; Makiyama K; Yamanaka H; Ueno D; Osaka K; Nagasaka M; Yamada T; Yao M
    Surg Endosc; 2017 Apr; 31(4):1999-2005. PubMed ID: 27572059
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Novel Fabric-Based Versatile and Stiffness-Tunable Soft Gripper Integrating Soft Pneumatic Fingers and Wrist.
    Fei Y; Wang J; Pang W
    Soft Robot; 2019 Feb; 6(1):1-20. PubMed ID: 30312144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Stereotactic minimally invasive tubular retractor system for deep brain lesions.
    Greenfield JP; Cobb WS; Tsouris AJ; Schwartz TH
    Neurosurgery; 2008 Oct; 63(4 Suppl 2):334-9; discussion 339-40. PubMed ID: 18981840
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modeling of a Soft-Rigid Gripper Actuated by a Linear-Extension Soft Pneumatic Actuator.
    Cheng P; Jia J; Ye Y; Wu C
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33445590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.