BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 28695501)

  • 21. Lactate down-regulates cellular poly(ADP-ribose) formation in cultured human skin fibroblasts.
    Wagner S; Hussain MZ; Beckert S; Ghani QP; Weinreich J; Hunt TK; Becker HD; Königsrainer A
    Eur J Clin Invest; 2007 Feb; 37(2):134-9. PubMed ID: 17217379
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanisms governing PARP expression, localization, and activity in cells.
    Sanderson DJ; Cohen MS
    Crit Rev Biochem Mol Biol; 2020 Dec; 55(6):541-554. PubMed ID: 32962438
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mass spectrometry-based functional proteomics of poly(ADP-ribose) polymerase-1.
    Pic E; Gagné JP; Poirier GG
    Expert Rev Proteomics; 2011 Dec; 8(6):759-74. PubMed ID: 22087659
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of poly ADP-ribosylation of VEGF by an interplay between PARP-16 and TNKS-2.
    Kunhiraman H; Ramachandran V; Edatt L; Sameer Kumar VB
    Mol Cell Biochem; 2020 Aug; 471(1-2):15-27. PubMed ID: 32472322
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Large-scale preparation and characterization of poly(ADP-ribose) and defined length polymers.
    Tan ES; Krukenberg KA; Mitchison TJ
    Anal Biochem; 2012 Sep; 428(2):126-36. PubMed ID: 22743307
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation.
    Gibson BA; Zhang Y; Jiang H; Hussey KM; Shrimp JH; Lin H; Schwede F; Yu Y; Kraus WL
    Science; 2016 Jul; 353(6294):45-50. PubMed ID: 27256882
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential contribution of poly(ADP-ribose)polymerase-1 and -2 (PARP-1 and -2) to the poly(ADP-ribosyl)ation reaction in rat primary spermatocytes.
    Tramontano F; Malanga M; Quesada P
    Mol Hum Reprod; 2007 Nov; 13(11):821-8. PubMed ID: 17766683
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Detection of poly(ADP-ribose) synthesis in Drosophila testes upon gamma-irradiation.
    Lankenau S; Bürkle A; Lankenau DH
    Chromosoma; 1999 Apr; 108(1):44-51. PubMed ID: 10199955
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Caffeine metabolites are inhibitors of the nuclear enzyme poly(ADP-ribose)polymerase-1 at physiological concentrations.
    Geraets L; Moonen HJ; Wouters EF; Bast A; Hageman GJ
    Biochem Pharmacol; 2006 Sep; 72(7):902-10. PubMed ID: 16870158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ADP-Ribosylated Peptide Enrichment and Site Identification: The Phosphodiesterase-Based Method.
    Daniels CM; Ong SE; Leung AKL
    Methods Mol Biol; 2017; 1608():79-93. PubMed ID: 28695505
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative correlation between cellular proliferation and nuclear poly (ADP-ribose) polymerase (PARP-1).
    Kun E; Kirsten E; Bauer PI; Ordahl CP
    Int J Mol Med; 2006 Feb; 17(2):293-300. PubMed ID: 16391829
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Role of PARPs in Inflammation-and Metabolic-Related Diseases: Molecular Mechanisms and Beyond.
    Ke Y; Wang C; Zhang J; Zhong X; Wang R; Zeng X; Ba X
    Cells; 2019 Sep; 8(9):. PubMed ID: 31500199
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel and potent poly(ADP-ribose) polymerase-1 inhibitor, FR247304 (5-chloro-2-[3-(4-phenyl-3,6-dihydro-1(2H)-pyridinyl)propyl]-4(3H)-quinazolinone), attenuates neuronal damage in in vitro and in vivo models of cerebral ischemia.
    Iwashita A; Tojo N; Matsuura S; Yamazaki S; Kamijo K; Ishida J; Yamamoto H; Hattori K; Matsuoka N; Mutoh S
    J Pharmacol Exp Ther; 2004 Aug; 310(2):425-36. PubMed ID: 15075382
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cytoprotective effect of gallotannin in oxidatively stressed HaCaT keratinocytes: the role of poly(ADP-ribose) metabolism.
    Bakondi E; Bai P; Erdélyi K; Szabó C; Gergely P; Virág L
    Exp Dermatol; 2004 Mar; 13(3):170-8. PubMed ID: 14987257
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Biological activity of poly(ADP-ribose)polymerase-1].
    Kiliańska ZM; Zołnierczyk J; Wesierska-Gadek J
    Postepy Hig Med Dosw (Online); 2010 Jul; 64():344-63. PubMed ID: 20679690
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A ribose-functionalized NAD
    Zhang XN; Cheng Q; Chen J; Lam AT; Lu Y; Dai Z; Pei H; Evdokimov NM; Louie SG; Zhang Y
    Nat Commun; 2019 Sep; 10(1):4196. PubMed ID: 31519936
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poly(ADP-ribose): PARadigms and PARadoxes.
    Bürkle A; Virág L
    Mol Aspects Med; 2013 Dec; 34(6):1046-65. PubMed ID: 23290998
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of poly-adenosine diphosphate-ribosylation in human hepatocellular carcinoma.
    Nomura F; Yaguchi M; Togawa A; Miyazaki M; Isobe K; Miyake M; Noda M; Nakai T
    J Gastroenterol Hepatol; 2000 May; 15(5):529-35. PubMed ID: 10847440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial and functional relationship between poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in the brain.
    Poitras MF; Koh DW; Yu SW; Andrabi SA; Mandir AS; Poirier GG; Dawson VL; Dawson TM
    Neuroscience; 2007 Aug; 148(1):198-211. PubMed ID: 17640816
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Poly(ADP-ribosyl)ation as a new posttranslational modification of YB-1.
    Alemasova EE; Pestryakov PE; Sukhanova MV; Kretov DA; Moor NA; Curmi PA; Ovchinnikov LP; Lavrik OI
    Biochimie; 2015 Dec; 119():36-44. PubMed ID: 26453809
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.