These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

386 related articles for article (PubMed ID: 28695505)

  • 1. ADP-Ribosylated Peptide Enrichment and Site Identification: The Phosphodiesterase-Based Method.
    Daniels CM; Ong SE; Leung AKL
    Methods Mol Biol; 2017; 1608():79-93. PubMed ID: 28695505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous, Quantitative Characterization of Protein ADP-Ribosylation and Protein Phosphorylation in Macrophages.
    Daniels CM; Nuccio A; Kaplan PR; Nita-Lazar A
    Methods Mol Biol; 2020; 2184():145-160. PubMed ID: 32808224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ENPP1 processes protein ADP-ribosylation in vitro.
    Palazzo L; Daniels CM; Nettleship JE; Rahman N; McPherson RL; Ong SE; Kato K; Nureki O; Leung AK; Ahel I
    FEBS J; 2016 Sep; 283(18):3371-88. PubMed ID: 27406238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of ADP-Ribose Acceptor Sites on In Vitro Modified Proteins by Liquid Chromatography-Tandem Mass Spectrometry.
    Leutert M; Bilan V; Gehrig P; Hottiger MO
    Methods Mol Biol; 2017; 1608():137-148. PubMed ID: 28695508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mapping PARP-1 auto-ADP-ribosylation sites by liquid chromatography-tandem mass spectrometry.
    Chapman JD; Gagné JP; Poirier GG; Goodlett DR
    J Proteome Res; 2013 Apr; 12(4):1868-80. PubMed ID: 23438649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combining Higher-Energy Collision Dissociation and Electron-Transfer/Higher-Energy Collision Dissociation Fragmentation in a Product-Dependent Manner Confidently Assigns Proteomewide ADP-Ribose Acceptor Sites.
    Bilan V; Leutert M; Nanni P; Panse C; Hottiger MO
    Anal Chem; 2017 Feb; 89(3):1523-1530. PubMed ID: 28035797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studying Catabolism of Protein ADP-Ribosylation.
    Palazzo L; James DI; Waddell ID; Ahel I
    Methods Mol Biol; 2017; 1608():415-430. PubMed ID: 28695524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of LTQ-Orbitrap Mass Spectrometer Parameters for the Identification of ADP-Ribosylation Sites.
    Rosenthal F; Nanni P; Barkow-Oesterreicher S; Hottiger MO
    J Proteome Res; 2015 Sep; 14(9):4072-9. PubMed ID: 26211397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nudix hydrolases degrade protein-conjugated ADP-ribose.
    Daniels CM; Thirawatananond P; Ong SE; Gabelli SB; Leung AK
    Sci Rep; 2015 Dec; 5():18271. PubMed ID: 26669448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Study into the ADP-Ribosylome of IFN-γ-Stimulated THP-1 Human Macrophage-like Cells Identifies ARTD8/PARP14 and ARTD9/PARP9 ADP-Ribosylation.
    Higashi H; Maejima T; Lee LH; Yamazaki Y; Hottiger MO; Singh SA; Aikawa M
    J Proteome Res; 2019 Apr; 18(4):1607-1622. PubMed ID: 30848916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing ADP-Ribosylation Sites Using Af1521 Enrichment Coupled to ETD-Based Mass Spectrometry.
    Anagho HA; Elsborg JD; Hendriks IA; Buch-Larsen SC; Nielsen ML
    Methods Mol Biol; 2023; 2609():251-270. PubMed ID: 36515840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphoproteomic approach to characterize protein mono- and poly(ADP-ribosyl)ation sites from cells.
    Daniels CM; Ong SE; Leung AK
    J Proteome Res; 2014 Aug; 13(8):3510-22. PubMed ID: 24920161
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible mono-ADP-ribosylation of DNA breaks.
    Munnur D; Ahel I
    FEBS J; 2017 Dec; 284(23):4002-4016. PubMed ID: 29054115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of distinct amino acids as ADP-ribose acceptor sites by mass spectrometry.
    Rosenthal F; Messner S; Roschitzki B; Gehrig P; Nanni P; Hottiger MO
    Methods Mol Biol; 2011; 780():57-66. PubMed ID: 21870254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging roles of eraser enzymes in the dynamic control of protein ADP-ribosylation.
    O'Sullivan J; Tedim Ferreira M; Gagné JP; Sharma AK; Hendzel MJ; Masson JY; Poirier GG
    Nat Commun; 2019 Mar; 10(1):1182. PubMed ID: 30862789
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enabling drug discovery for the PARP protein family through the detection of mono-ADP-ribosylation.
    Lu AZ; Abo R; Ren Y; Gui B; Mo JR; Blackwell D; Wigle T; Keilhack H; Niepel M
    Biochem Pharmacol; 2019 Sep; 167():97-106. PubMed ID: 31075269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification and analysis of ADP-ribosylated proteins.
    Haag F; Buck F
    Curr Top Microbiol Immunol; 2015; 384():33-50. PubMed ID: 25113886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural analyses of NudT16-ADP-ribose complexes direct rational design of mutants with improved processing of poly(ADP-ribosyl)ated proteins.
    Thirawatananond P; McPherson RL; Malhi J; Nathan S; Lambrecht MJ; Brichacek M; Hergenrother PJ; Leung AKL; Gabelli SB
    Sci Rep; 2019 Apr; 9(1):5940. PubMed ID: 30976021
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PARPs and ADP-ribosylation in RNA biology: from RNA expression and processing to protein translation and proteostasis.
    Kim DS; Challa S; Jones A; Kraus WL
    Genes Dev; 2020 Mar; 34(5-6):302-320. PubMed ID: 32029452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gas-Phase Fragmentation of ADP-Ribosylated Peptides: Arginine-Specific Side-Chain Losses and Their Implication in Database Searches.
    Gehrig PM; Nowak K; Panse C; Leutert M; Grossmann J; Schlapbach R; Hottiger MO
    J Am Soc Mass Spectrom; 2021 Jan; 32(1):157-168. PubMed ID: 33140951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.