BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 28695509)

  • 41. Proteome-wide identification of poly(ADP-Ribosyl)ation targets in different genotoxic stress responses.
    Jungmichel S; Rosenthal F; Altmeyer M; Lukas J; Hottiger MO; Nielsen ML
    Mol Cell; 2013 Oct; 52(2):272-85. PubMed ID: 24055347
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expanding functions of intracellular resident mono-ADP-ribosylation in cell physiology.
    Feijs KL; Verheugd P; Lüscher B
    FEBS J; 2013 Aug; 280(15):3519-29. PubMed ID: 23639026
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proteome-wide identification of the endogenous ADP-ribosylome of mammalian cells and tissue.
    Martello R; Leutert M; Jungmichel S; Bilan V; Larsen SC; Young C; Hottiger MO; Nielsen ML
    Nat Commun; 2016 Sep; 7():12917. PubMed ID: 27686526
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Deep Profiling of Proteome and Phosphoproteome by Isobaric Labeling, Extensive Liquid Chromatography, and Mass Spectrometry.
    Bai B; Tan H; Pagala VR; High AA; Ichhaporia VP; Hendershot L; Peng J
    Methods Enzymol; 2017; 585():377-395. PubMed ID: 28109439
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-Resolution Lysine Acetylome Profiling by Offline Fractionation and Immunoprecipitation.
    Giese J; Lassowskat I; Finkemeier I
    Methods Mol Biol; 2020; 2139():241-256. PubMed ID: 32462591
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Characterization of ADP-ribosylation sites on desmin and restoration of desmin intermediate filament assembly by de-ADP-ribosylation .
    Zhou H; Huiatt TW; Robson RM; Sernett SW; Graves DJ
    Arch Biochem Biophys; 1996 Oct; 334(2):214-22. PubMed ID: 8900395
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Quantitative Determination of MAR Hydrolase Residue Specificity In Vitro by Tandem Mass Spectrometry.
    McPherson RL; Ong SE; Leung AKL
    Methods Mol Biol; 2018; 1813():271-283. PubMed ID: 30097875
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.
    Gritsenko MA; Xu Z; Liu T; Smith RD
    Methods Mol Biol; 2016; 1410():237-47. PubMed ID: 26867748
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitation of Poly(ADP-Ribose) by Isotope Dilution Mass Spectrometry.
    Zubel T; Martello R; Bürkle A; Mangerich A
    Methods Mol Biol; 2017; 1608():3-18. PubMed ID: 28695499
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Identification of Post-Translational Modifications from Serum/Plasma by Immunoaffinity Enrichment and LC-MS/MS Analysis Without Depletion of Abundant Proteins.
    Gu H; Ren J; Jia X; Stokes MP
    Methods Mol Biol; 2017; 1619():119-125. PubMed ID: 28674881
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Establishment of a Mass-Spectrometry-Based Method for the Identification of the
    Lüthi SC; Howald A; Nowak K; Graage R; Bartolomei G; Neupert C; Sidler X; Leslie Pedrioli D; Hottiger MO
    J Proteome Res; 2021 Jun; 20(6):3090-3101. PubMed ID: 34032442
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Proteomic Characterization of the Heart and Skeletal Muscle Reveals Widespread Arginine ADP-Ribosylation by the ARTC1 Ectoenzyme.
    Leutert M; Menzel S; Braren R; Rissiek B; Hopp AK; Nowak K; Bisceglie L; Gehrig P; Li H; Zolkiewska A; Koch-Nolte F; Hottiger MO
    Cell Rep; 2018 Aug; 24(7):1916-1929.e5. PubMed ID: 30110646
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ADPriboDB: The database of ADP-ribosylated proteins.
    Vivelo CA; Wat R; Agrawal C; Tee HY; Leung AK
    Nucleic Acids Res; 2017 Jan; 45(D1):D204-D209. PubMed ID: 27507885
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases.
    Rosenthal F; Feijs KL; Frugier E; Bonalli M; Forst AH; Imhof R; Winkler HC; Fischer D; Caflisch A; Hassa PO; Lüscher B; Hottiger MO
    Nat Struct Mol Biol; 2013 Apr; 20(4):502-7. PubMed ID: 23474714
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Reading ADP-ribosylation signaling using chemical biology and interaction proteomics.
    Kliza KW; Liu Q; Roosenboom LWM; Jansen PWTC; Filippov DV; Vermeulen M
    Mol Cell; 2021 Nov; 81(21):4552-4567.e8. PubMed ID: 34551281
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Development of an Inhibitor Screening Assay for Mono-ADP-Ribosyl Hydrolyzing Macrodomains Using AlphaScreen Technology.
    Haikarainen T; Maksimainen MM; Obaji E; Lehtiö L
    SLAS Discov; 2018 Mar; 23(3):255-263. PubMed ID: 29028410
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Quantitative, high-resolution proteomics for data-driven systems biology.
    Cox J; Mann M
    Annu Rev Biochem; 2011; 80():273-99. PubMed ID: 21548781
    [TBL] [Abstract][Full Text] [Related]  

  • 58. urPTMdb/TeaProt: Upstream and Downstream Proteomics Analysis.
    Molendijk J; Yip R; Parker BL
    J Proteome Res; 2023 Feb; 22(2):302-310. PubMed ID: 35759515
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Heavy Methyl SILAC Metabolic Labeling of Human Cell Lines for High-Confidence Identification of R/K-Methylated Peptides by High-Resolution Mass Spectrometry.
    Massignani E; Maniaci M; Bonaldi T
    Methods Mol Biol; 2023; 2603():173-186. PubMed ID: 36370279
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Application of peptide retention time in proteome research].
    Shao C; Gao Y
    Se Pu; 2010 Feb; 28(2):128-34. PubMed ID: 20556949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.