BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 28695509)

  • 61. Method for the synthesis of mono-ADP-ribose conjugated peptides.
    Moyle PM; Muir TW
    J Am Chem Soc; 2010 Nov; 132(45):15878-80. PubMed ID: 20968292
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Quantifying Proteome and Protein Modifications in Activated T Cells by Multiplexed Isobaric Labeling Mass Spectrometry.
    Tan H; Blanco DB; Xie B; Li Y; Wu Z; Chi H; Peng J
    Methods Mol Biol; 2021; 2285():297-317. PubMed ID: 33928561
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Detection of the Ubiquitinome in Cells Undergoing Oncogene-Induced Senescence.
    Zhu H; Le L; Tang HY; Speicher DW; Zhang R
    Methods Mol Biol; 2017; 1534():127-137. PubMed ID: 27812874
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A role of intracellular mono-ADP-ribosylation in cancer biology.
    Scarpa ES; Fabrizio G; Di Girolamo M
    FEBS J; 2013 Aug; 280(15):3551-62. PubMed ID: 23590234
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.
    Xu F; Yang T; Sheng Y; Zhong T; Yang M; Chen Y
    J Proteome Res; 2014 Dec; 13(12):5452-60. PubMed ID: 25403019
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Clinical Proteomics: Liquid Chromatography-Mass Spectrometry (LC-MS) Purification Systems.
    Henry M; Meleady P
    Methods Mol Biol; 2017; 1485():375-388. PubMed ID: 27730564
    [TBL] [Abstract][Full Text] [Related]  

  • 67. i-RUBY: a novel software for quantitative analysis of highly accurate shotgun-proteomics liquid chromatography/tandem mass spectrometry data obtained without stable-isotope labeling of proteins.
    Wada K; Ogiwara A; Nagasaka K; Tanaka N; Komatsu Y
    Rapid Commun Mass Spectrom; 2011 Apr; 25(7):960-8. PubMed ID: 21416533
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Analysis of post-translational modifications by LC-MS/MS.
    Johnson H; Eyers CE
    Methods Mol Biol; 2010; 658():93-108. PubMed ID: 20839099
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Systems-wide Analysis of Serine ADP-Ribosylation Reveals Widespread Occurrence and Site-Specific Overlap with Phosphorylation.
    Larsen SC; Hendriks IA; Lyon D; Jensen LJ; Nielsen ML
    Cell Rep; 2018 Aug; 24(9):2493-2505.e4. PubMed ID: 30157440
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Disruption of Macrodomain Protein SCO6735 Increases Antibiotic Production in Streptomyces coelicolor.
    Lalić J; Posavec Marjanović M; Palazzo L; Perina D; Sabljić I; Žaja R; Colby T; Pleše B; Halasz M; Jankevicius G; Bucca G; Ahel M; Matić I; Ćetković H; Luić M; Mikoč A; Ahel I
    J Biol Chem; 2016 Oct; 291(44):23175-23187. PubMed ID: 27634042
    [TBL] [Abstract][Full Text] [Related]  

  • 71. ADPriboDB 2.0: an updated database of ADP-ribosylated proteins.
    Ayyappan V; Wat R; Barber C; Vivelo CA; Gauch K; Visanpattanasin P; Cook G; Sazeides C; Leung AKL
    Nucleic Acids Res; 2021 Jan; 49(D1):D261-D265. PubMed ID: 33137182
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A quantitative analysis for the ADP-ribosylation activity of pertussis toxin: an enzymatic-HPLC coupled assay applicable to formulated whole cell and acellular pertussis vaccine products.
    Cyr T; Menzies AJ; Calver J; Whitehouse LW
    Biologicals; 2001 Jun; 29(2):81-95. PubMed ID: 11580213
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Isotope-labeling and affinity enrichment of phosphopeptides for proteomic analysis using liquid chromatography-tandem mass spectrometry.
    Kota U; Chien KY; Goshe MB
    Methods Mol Biol; 2009; 564():303-21. PubMed ID: 19544030
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Site-specific determination of lysine acetylation stoichiometries on the proteome-scale.
    Chen Y; Li Y
    Methods Enzymol; 2019; 626():115-132. PubMed ID: 31606072
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Effect of oxidative stress on in vivo ADP-ribosylation of eukaryotic elongation factor 2.
    Bektaş M; Akçakaya H; Aroymak A; Nurten R; Bermek E
    Int J Biochem Cell Biol; 2005 Jan; 37(1):91-9. PubMed ID: 15381153
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Mass Spectrometry-Based Proteomics.
    Di Falco MR
    Methods Mol Biol; 2018; 1775():93-106. PubMed ID: 29876812
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Solid-Phase Synthesis and Biological Evaluation of Peptides ADP-Ribosylated at Histidine.
    Minnee H; Rack JGM; van der Marel GA; Overkleeft HS; Codée JDC; Ahel I; Filippov DV
    Angew Chem Int Ed Engl; 2024 Jan; 63(4):e202313317. PubMed ID: 37903139
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Proteome research based on modern liquid chromatography--tandem mass spectrometry: separation, identification and quantification.
    Fröhlich T; Arnold GJ
    J Neural Transm (Vienna); 2006 Aug; 113(8):973-94. PubMed ID: 16835695
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Physiology of ADP-ribosylation.
    Koch-Nolte F; Ziegler M
    FEBS J; 2013 Aug; 280(15):3483. PubMed ID: 23773547
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Mono-ADP-ribosylation: a tool for modulating immune response and cell signaling.
    Corda D; Di Girolamo M
    Sci STKE; 2002 Dec; 2002(163):pe53. PubMed ID: 12488509
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.