BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28695517)

  • 1. High-Throughput Colorimetric Assay for Identifying PARP-1 Inhibitors Using a Large Small-Molecule Collection.
    Kotova E; Tulin AV
    Methods Mol Biol; 2017; 1608():299-312. PubMed ID: 28695517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Small-molecule collection and high-throughput colorimetric assay to identify PARP1 inhibitors.
    Kotova E; Pinnola AD; Tulin AV
    Methods Mol Biol; 2011; 780():491-516. PubMed ID: 21870279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-NAD-Like poly(ADP-Ribose) Polymerase-1 Inhibitors effectively Eliminate Cancer in vivo.
    Thomas C; Ji Y; Lodhi N; Kotova E; Pinnola AD; Golovine K; Makhov P; Pechenkina K; Kolenko V; Tulin AV
    EBioMedicine; 2016 Nov; 13():90-98. PubMed ID: 27727003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of disaccharide nucleoside analogues as potential poly(ADP-ribose) polymerase-1 inhibitors.
    Zheng M; Mex M; Götz KH; Marx A
    Org Biomol Chem; 2018 Nov; 16(46):8904-8907. PubMed ID: 30203829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a miniaturized assay for the high-throughput screening program for poly(ADP-ribose) polymerase-1.
    Lee S; Koo HN; Lee BH
    Methods Find Exp Clin Pharmacol; 2005 Nov; 27(9):617-22. PubMed ID: 16357945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-NAD-like PARP-1 inhibitors in prostate cancer treatment.
    Karpova Y; Wu C; Divan A; McDonnell ME; Hewlett E; Makhov P; Gordon J; Ye M; Reitz AB; Childers WE; Skorski T; Kolenko V; Tulin AV
    Biochem Pharmacol; 2019 Sep; 167():149-162. PubMed ID: 30880062
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of Inosine Monophosphate Dehydrogenase Activity Assay to Determine the Specificity of PARP-1 Inhibitors.
    Anthony S; Peterson JR; Ji Y
    Methods Mol Biol; 2017; 1608():337-342. PubMed ID: 28695520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of PARP-1 activity based on hyperbranched-poly (ADP-ribose) polymers responsive current in artificial nanochannels.
    Liu Y; Fan J; Yang H; Xu E; Wei W; Zhang Y; Liu S
    Biosens Bioelectron; 2018 Aug; 113():136-141. PubMed ID: 29754052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PARP Inhibitors and Parkinson's Disease.
    Olsen AL; Feany MB
    N Engl J Med; 2019 Jan; 380(5):492-494. PubMed ID: 30699325
    [No Abstract]   [Full Text] [Related]  

  • 10. Inputs and outputs of poly(ADP-ribosyl)ation: Relevance to oxidative stress.
    Hegedűs C; Virág L
    Redox Biol; 2014; 2():978-82. PubMed ID: 25460733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into PARP Inhibitors' Selectivity Using Fluorescence Polarization and Surface Plasmon Resonance Binding Assays.
    Papeo G; Avanzi N; Bettoni S; Leone A; Paolucci M; Perego R; Quartieri F; Riccardi-Sirtori F; Thieffine S; Montagnoli A; Lupi R
    J Biomol Screen; 2014 Sep; 19(8):1212-9. PubMed ID: 24916412
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Update on Poly(ADP-ribose)polymerase-1 (PARP-1) Inhibitors: Opportunities and Challenges in Cancer Therapy.
    Wang YQ; Wang PY; Wang YT; Yang GF; Zhang A; Miao ZH
    J Med Chem; 2016 Nov; 59(21):9575-9598. PubMed ID: 27416328
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel tricyclic poly (ADP-ribose) polymerase-1/2 inhibitors with potent anticancer chemopotentiating activity: Design, synthesis and biological evaluation.
    Li H; Hu Y; Wang X; He G; Xu Y; Zhu Q
    Bioorg Med Chem; 2016 Oct; 24(19):4731-4740. PubMed ID: 27561983
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PARP-1 Controls the Adipogenic Transcriptional Program by PARylating C/EBPβ and Modulating Its Transcriptional Activity.
    Luo X; Ryu KW; Kim DS; Nandu T; Medina CJ; Gupte R; Gibson BA; Soccio RE; Yu Y; Gupta RK; Kraus WL
    Mol Cell; 2017 Jan; 65(2):260-271. PubMed ID: 28107648
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly(ADP-ribose) polymerase inhibitors activate the p53 signaling pathway in neural stem/progenitor cells.
    Okuda A; Kurokawa S; Takehashi M; Maeda A; Fukuda K; Kubo Y; Nogusa H; Takatani-Nakase T; Okuda S; Ueda K; Tanaka S
    BMC Neurosci; 2017 Jan; 18(1):14. PubMed ID: 28095779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contrasting sirtuin and poly(ADP-ribose)polymerase activities of selected 2,4,6-trisubstituted benzimidazoles.
    Yeong KY; Tan SC; Mai CW; Leong CO; Chung FF; Lee YK; Chee CF; Abdul Rahman N
    Chem Biol Drug Des; 2018 Jan; 91(1):213-219. PubMed ID: 28719017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Therapeutic Targeting of Poly(ADP-Ribose) Polymerase-1 (PARP1) in Cancer: Current Developments, Therapeutic Strategies, and Future Opportunities.
    Rajawat J; Shukla N; Mishra DP
    Med Res Rev; 2017 Nov; 37(6):1461-1491. PubMed ID: 28510338
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based design of new poly (ADP-ribose) polymerase (PARP-1) inhibitors.
    Chadha N; Jaggi AS; Silakari O
    Mol Divers; 2017 Aug; 21(3):655-660. PubMed ID: 28653128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An enzymatic assay for poly(ADP-ribose) polymerase-1 (PARP-1) via the chemical quantitation of NAD(+): application to the high-throughput screening of small molecules as potential inhibitors.
    Putt KS; Hergenrother PJ
    Anal Biochem; 2004 Mar; 326(1):78-86. PubMed ID: 14769338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies Employed for the Development of PARP Inhibitors.
    Canan S; Maegley K; Curtin NJ
    Methods Mol Biol; 2017; 1608():271-297. PubMed ID: 28695516
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.