These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 28695625)
21. Mechanisms of water oxidation from the blue dimer to photosystem II. Liu F; Concepcion JJ; Jurss JW; Cardolaccia T; Templeton JL; Meyer TJ Inorg Chem; 2008 Mar; 47(6):1727-52. PubMed ID: 18330966 [TBL] [Abstract][Full Text] [Related]
22. Toward controlling water oxidation catalysis: tunable activity of ruthenium complexes with axial imidazole/DMSO ligands. Wang L; Duan L; Stewart B; Pu M; Liu J; Privalov T; Sun L J Am Chem Soc; 2012 Nov; 134(45):18868-80. PubMed ID: 23062211 [TBL] [Abstract][Full Text] [Related]
23. {Co Song F; Moré R; Schilling M; Smolentsev G; Azzaroli N; Fox T; Luber S; Patzke GR J Am Chem Soc; 2017 Oct; 139(40):14198-14208. PubMed ID: 28953394 [TBL] [Abstract][Full Text] [Related]
24. A Calix[4]arene-Based Cyclic Dinuclear Ruthenium Complex for Light-Driven Catalytic Water Oxidation. Noll N; Würthner F Chemistry; 2021 Jan; 27(1):444-450. PubMed ID: 33241573 [TBL] [Abstract][Full Text] [Related]
25. Oxygen-oxygen bond formation pathways promoted by ruthenium complexes. Romain S; Vigara L; Llobet A Acc Chem Res; 2009 Dec; 42(12):1944-53. PubMed ID: 19908829 [TBL] [Abstract][Full Text] [Related]
26. Determination of Proton-Coupled Electron Transfer Reorganization Energies with Application to Water Oxidation Catalysts. Schneider J; Bangle RE; Swords WB; Troian-Gautier L; Meyer GJ J Am Chem Soc; 2019 Jun; 141(25):9758-9763. PubMed ID: 31194527 [TBL] [Abstract][Full Text] [Related]
27. Metal-catalyzed reversible conversion between chemical and electrical energy designed towards a sustainable society. Tanaka K Chem Rec; 2009; 9(3):169-86. PubMed ID: 19504503 [TBL] [Abstract][Full Text] [Related]
28. Oxygen Atom Transfer as an Alternative Pathway for Oxygen-Oxygen Bond Formation. Ertem MZ; Concepcion JJ Inorg Chem; 2020 May; 59(9):5966-5974. PubMed ID: 32314576 [TBL] [Abstract][Full Text] [Related]
29. cis,cis-[(bpy)2RuVO]2O4+ catalyzes water oxidation formally via in situ generation of radicaloid RuIV-O*. Yang X; Baik MH J Am Chem Soc; 2006 Jun; 128(23):7476-85. PubMed ID: 16756301 [TBL] [Abstract][Full Text] [Related]
30. Accumulation of multiple oxidative equivalents at a single site by cross-surface electron transfer on TiO2. Song W; Ito A; Binstead RA; Hanson K; Luo H; Brennaman MK; Concepcion JJ; Meyer TJ J Am Chem Soc; 2013 Aug; 135(31):11587-94. PubMed ID: 23848562 [TBL] [Abstract][Full Text] [Related]
31. Photochemical, electrochemical, and photoelectrochemical water oxidation catalyzed by water-soluble mononuclear ruthenium complexes. Li TT; Zhao WL; Chen Y; Li FM; Wang CJ; Tian YH; Fu WF Chemistry; 2014 Oct; 20(43):13957-64. PubMed ID: 25205065 [TBL] [Abstract][Full Text] [Related]
32. Electronic structure of oxidized complexes derived from cis-[Ru(II)(bpy)2(H2O)2]2+ and its photoisomerization mechanism. Planas N; Vigara L; Cady C; Miró P; Huang P; Hammarström L; Styring S; Leidel N; Dau H; Haumann M; Gagliardi L; Cramer CJ; Llobet A Inorg Chem; 2011 Nov; 50(21):11134-42. PubMed ID: 21992177 [TBL] [Abstract][Full Text] [Related]
33. Theoretical study of water oxidation by the ruthenium blue dimer. II. Proton relay chain mechanism for the step [bpy2(HOO)Ru(IV)ORu(IV)(OH)bpy2]4+ → [bpy2(O2(–))Ru(IV)ORu(III)(OH2)bpy2]4+. Bianco R; Hay PJ; Hynes JT J Phys Chem B; 2013 Dec; 117(49):15761-73. PubMed ID: 23952641 [TBL] [Abstract][Full Text] [Related]
34. New water oxidation chemistry of a seven-coordinate ruthenium complex with a tetradentate polypyridyl ligand. Muckerman JT; Kowalczyk M; Badiei YM; Polyansky DE; Concepcion JJ; Zong R; Thummel RP; Fujita E Inorg Chem; 2014 Jul; 53(13):6904-13. PubMed ID: 24911180 [TBL] [Abstract][Full Text] [Related]
36. What factors control O2 binding and release thermodynamics in mononuclear ruthenium water oxidation catalysts? A theoretical exploration. Zhang G; Chen K; Chen H; Yao J; Shaik S Inorg Chem; 2013 May; 52(9):5088-96. PubMed ID: 23560621 [TBL] [Abstract][Full Text] [Related]
37. Water oxidation catalyzed by mononuclear ruthenium complexes with a 2,2'-bipyridine-6,6'-dicarboxylate (bda) ligand: how ligand environment influences the catalytic behavior. Staehle R; Tong L; Wang L; Duan L; Fischer A; Ahlquist MS; Sun L; Rau S Inorg Chem; 2014 Feb; 53(3):1307-19. PubMed ID: 24422472 [TBL] [Abstract][Full Text] [Related]
38. A broad view on the complexity involved in water oxidation catalysis based on Ru-bpn complexes. Ghaderian A; Franke A; Gil-Sepulcre M; Benet-Buchholz J; Llobet A; Ivanović-Burmazović I; Gimbert-Suriñach C Dalton Trans; 2020 Dec; 49(47):17375-17387. PubMed ID: 33211034 [TBL] [Abstract][Full Text] [Related]
39. Water oxidation with mononuclear ruthenium(II) polypyridine complexes involving a direct Ru(IV)═O pathway in neutral and alkaline media. Badiei YM; Polyansky DE; Muckerman JT; Szalda DJ; Haberdar R; Zong R; Thummel RP; Fujita E Inorg Chem; 2013 Aug; 52(15):8845-50. PubMed ID: 23837911 [TBL] [Abstract][Full Text] [Related]
40. Artificial photosynthesis: from nanosecond electron transfer to catalytic water oxidation. Kärkäs MD; Johnston EV; Verho O; Akermark B Acc Chem Res; 2014 Jan; 47(1):100-11. PubMed ID: 23957573 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]