BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 28695676)

  • 1. Matrin3 binds directly to intronic pyrimidine-rich sequences and controls alternative splicing.
    Uemura Y; Oshima T; Yamamoto M; Reyes CJ; Costa Cruz PH; Shibuya T; Kawahara Y
    Genes Cells; 2017 Sep; 22(9):785-798. PubMed ID: 28695676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear matrix protein Matrin3 regulates alternative splicing and forms overlapping regulatory networks with PTB.
    Coelho MB; Attig J; Bellora N; König J; Hallegger M; Kayikci M; Eyras E; Ule J; Smith CW
    EMBO J; 2015 Mar; 34(5):653-68. PubMed ID: 25599992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. De novo prediction of PTBP1 binding and splicing targets reveals unexpected features of its RNA recognition and function.
    Han A; Stoilov P; Linares AJ; Zhou Y; Fu XD; Black DL
    PLoS Comput Biol; 2014 Jan; 10(1):e1003442. PubMed ID: 24499931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intronic polypyrimidine-rich element downstream of the donor site modulates cystic fibrosis transmembrane conductance regulator exon 9 alternative splicing.
    Zuccato E; Buratti E; Stuani C; Baralle FE; Pagani F
    J Biol Chem; 2004 Apr; 279(17):16980-8. PubMed ID: 14966131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. αCP binding to a cytosine-rich subset of polypyrimidine tracts drives a novel pathway of cassette exon splicing in the mammalian transcriptome.
    Ji X; Park JW; Bahrami-Samani E; Lin L; Duncan-Lewis C; Pherribo G; Xing Y; Liebhaber SA
    Nucleic Acids Res; 2016 Mar; 44(5):2283-97. PubMed ID: 26896798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heteromeric RNP Assembly at LINEs Controls Lineage-Specific RNA Processing.
    Attig J; Agostini F; Gooding C; Chakrabarti AM; Singh A; Haberman N; Zagalak JA; Emmett W; Smith CWJ; Luscombe NM; Ule J
    Cell; 2018 Aug; 174(5):1067-1081.e17. PubMed ID: 30078707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins.
    Coelho MB; Ascher DB; Gooding C; Lang E; Maude H; Turner D; Llorian M; Pires DE; Attig J; Smith CW
    Biochem Soc Trans; 2016 Aug; 44(4):1058-65. PubMed ID: 27528752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and Characterization of a Minimal Functional Splicing Regulatory Protein, PTBP1.
    Ontiveros RJ; Hernandez L; Nguyen H; Hernandez Lopez AL; Shankar A; Kim E; Keppetipola NM
    Biochemistry; 2020 Dec; 59(50):4766-4774. PubMed ID: 33284593
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polypyrimidine tract sequences direct selection of alternative branch sites and influence protein binding.
    Norton PA
    Nucleic Acids Res; 1994 Sep; 22(19):3854-60. PubMed ID: 7937104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure of PTB bound to RNA: specific binding and implications for splicing regulation.
    Oberstrass FC; Auweter SD; Erat M; Hargous Y; Henning A; Wenter P; Reymond L; Amir-Ahmady B; Pitsch S; Black DL; Allain FH
    Science; 2005 Sep; 309(5743):2054-7. PubMed ID: 16179478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neuron-specific splicing switch mediated by an array of pre-mRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart.
    Ashiya M; Grabowski PJ
    RNA; 1997 Sep; 3(9):996-1015. PubMed ID: 9292499
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The defective splicing caused by the ISCU intron mutation in patients with myopathy with lactic acidosis is repressed by PTBP1 but can be derepressed by IGF2BP1.
    Nordin A; Larsson E; Holmberg M
    Hum Mutat; 2012 Mar; 33(3):467-70. PubMed ID: 22125086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The domains of polypyrimidine tract binding protein have distinct RNA structural preferences.
    Clerte C; Hall KB
    Biochemistry; 2009 Mar; 48(10):2063-74. PubMed ID: 19226116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of BCL-X splicing reveals a role for the polypyrimidine tract binding protein (PTBP1/hnRNP I) in alternative 5' splice site selection.
    Bielli P; Bordi M; Di Biasio V; Sette C
    Nucleic Acids Res; 2014 Oct; 42(19):12070-81. PubMed ID: 25294838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RBFOX and PTBP1 proteins regulate the alternative splicing of micro-exons in human brain transcripts.
    Li YI; Sanchez-Pulido L; Haerty W; Ponting CP
    Genome Res; 2015 Jan; 25(1):1-13. PubMed ID: 25524026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PTBP1 and PTBP2 impaired autoregulation of SRSF3 in cancer cells.
    Guo J; Jia J; Jia R
    Sci Rep; 2015 Sep; 5():14548. PubMed ID: 26416554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intronic Determinants Coordinate Charme lncRNA Nuclear Activity through the Interaction with MATR3 and PTBP1.
    Desideri F; Cipriano A; Petrezselyova S; Buonaiuto G; Santini T; Kasparek P; Prochazka J; Janson G; Paiardini A; Calicchio A; Colantoni A; Sedlacek R; Bozzoni I; Ballarino M
    Cell Rep; 2020 Dec; 33(12):108548. PubMed ID: 33357424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mechanism underlying position-specific regulation of alternative splicing.
    Hamid FM; Makeyev EV
    Nucleic Acids Res; 2017 Dec; 45(21):12455-12468. PubMed ID: 30053257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TCF3 mutually exclusive alternative splicing is controlled by long-range cooperative actions between hnRNPH1 and PTBP1.
    Yamazaki T; Liu L; Manley JL
    RNA; 2019 Nov; 25(11):1497-1508. PubMed ID: 31391218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple determinants of splicing repression activity in the polypyrimidine tract binding proteins, PTBP1 and PTBP2.
    Keppetipola NM; Yeom KH; Hernandez AL; Bui T; Sharma S; Black DL
    RNA; 2016 Aug; 22(8):1172-80. PubMed ID: 27288314
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.