These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. A novel nonlinear nano-scale wear law for metallic brake pads. Patil SP; Chilakamarri SH; Markert B Phys Chem Chem Phys; 2018 May; 20(17):12027-12036. PubMed ID: 29671444 [TBL] [Abstract][Full Text] [Related]
5. Asperity level characterization of abrasive wear using atomic force microscopy. Walker J; Umer J; Mohammadpour M; Theodossiades S; Bewsher SR; Offner G; Bansal H; Leighton M; Braunstingl M; Flesch HG Proc Math Phys Eng Sci; 2021 Jun; 477(2250):20210103. PubMed ID: 35153566 [TBL] [Abstract][Full Text] [Related]
6. Non-Empirical Law for Nanoscale Atom-by-Atom Wear. Wang Y; Xu J; Ootani Y; Ozawa N; Adachi K; Kubo M Adv Sci (Weinh); 2021 Jan; 8(2):2002827. PubMed ID: 33511015 [TBL] [Abstract][Full Text] [Related]
7. Evolution of the Contact Area with Normal Load for Rough Surfaces: from Atomic to Macroscopic Scales. Huang S Nanoscale Res Lett; 2017 Nov; 12(1):592. PubMed ID: 29134369 [TBL] [Abstract][Full Text] [Related]
8. Debris and 1/f noise in sliding friction dynamics under wear conditions. Vragovic I; Molina JM; Prieto R; Duarte M; Narciso J; Louis E Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066123. PubMed ID: 20365247 [TBL] [Abstract][Full Text] [Related]
9. Effect of Surface Chemistry on the Mechanisms and Governing Laws of Friction and Wear. Dai L; Sorkin V; Zhang YW ACS Appl Mater Interfaces; 2016 Apr; 8(13):8765-72. PubMed ID: 27004415 [TBL] [Abstract][Full Text] [Related]
10. Principles of atomic friction: from sticking atoms to superlubric sliding. Hölscher H; Schirmeisen A; Schwarz UD Philos Trans A Math Phys Eng Sci; 2008 Apr; 366(1869):1383-404. PubMed ID: 18156127 [TBL] [Abstract][Full Text] [Related]
11. Multibond Model of Single-Asperity Tribochemical Wear at the Nanoscale. Shao Y; Jacobs TDB; Jiang Y; Turner KT; Carpick RW; Falk ML ACS Appl Mater Interfaces; 2017 Oct; 9(40):35333-35340. PubMed ID: 28880074 [TBL] [Abstract][Full Text] [Related]
12. Modeling Adhesive Wear in Asperity and Rough Surface Contacts: A Review. Zhang H; Goltsberg R; Etsion I Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234200 [TBL] [Abstract][Full Text] [Related]
13. Nanoscale Wear Triggered by Stress-Driven Electron Transfer. Lu Y; Xiao C; Jiang Y; Tang C; Chen L; Sun J; Qian L Nano Lett; 2023 Oct; 23(19):8842-8849. PubMed ID: 37729549 [TBL] [Abstract][Full Text] [Related]
14. 1/f Noise in sliding friction under wear conditions: the role of debris. Duarte M; Vragovic I; Molina JM; Prieto R; Narciso J; Louis E Phys Rev Lett; 2009 Jan; 102(4):045501. PubMed ID: 19257438 [TBL] [Abstract][Full Text] [Related]
15. Wear characteristics of diamond-coated atomic force microscope probe. Chung KH; Kim DE Ultramicroscopy; 2007 Dec; 108(1):1-10. PubMed ID: 17367934 [TBL] [Abstract][Full Text] [Related]
17. Enhanced computational prediction of polyethylene wear in hip joints by incorporating cross-shear and contact pressure in additional to load and sliding distance: effect of head diameter. Kang L; Galvin AL; Fisher J; Jin Z J Biomech; 2009 May; 42(7):912-8. PubMed ID: 19261286 [TBL] [Abstract][Full Text] [Related]
18. A story of two transitions: From adhesive to abrasive wear and from ductile to brittle regime. Wattel SZ; Molinari JF J Chem Phys; 2024 Jan; 160(1):. PubMed ID: 38180258 [TBL] [Abstract][Full Text] [Related]
19. Study on Wear Characteristics of Revolute Clearance Joints in Mechanical Systems. Bai Z; Ning Z; Zhou J Micromachines (Basel); 2022 Jun; 13(7):. PubMed ID: 35888835 [TBL] [Abstract][Full Text] [Related]
20. Size Dependence of Nanoscale Wear of Silicon Carbide. Tangpatjaroen C; Grierson D; Shannon S; Jakes JE; Szlufarska I ACS Appl Mater Interfaces; 2017 Jan; 9(2):1929-1940. PubMed ID: 27997110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]