These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

327 related articles for article (PubMed ID: 28696337)

  • 1. Memristive device based learning for navigation in robots.
    Sarim M; Kumar M; Jha R; Minai AA
    Bioinspir Biomim; 2017 Nov; 12(6):066011. PubMed ID: 28696337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired neural network for real-time cooperative hunting by multirobots in unknown environments.
    Ni J; Yang SX
    IEEE Trans Neural Netw; 2011 Dec; 22(12):2062-77. PubMed ID: 22042152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prune-able fuzzy ART neural architecture for robot map learning and navigation in dynamic environments.
    Araújo R
    IEEE Trans Neural Netw; 2006 Sep; 17(5):1235-49. PubMed ID: 17001984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Memristive Hebbian plasticity model: device requirements for the emulation of Hebbian plasticity based on memristive devices.
    Ziegler M; Riggert C; Hansen M; Bartsch T; Kohlstedt H
    IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):197-206. PubMed ID: 25879966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Social Robot Navigation Tasks: Combining Machine Learning Techniques and Social Force Model.
    Gil Ó; Garrell A; Sanfeliu A
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770395
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics.
    Lee Y; Lee TW
    Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromorphic computing with multi-memristive synapses.
    Boybat I; Le Gallo M; Nandakumar SR; Moraitis T; Parnell T; Tuma T; Rajendran B; Leblebici Y; Sebastian A; Eleftheriou E
    Nat Commun; 2018 Jun; 9(1):2514. PubMed ID: 29955057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Training and operation of an integrated neuromorphic network based on metal-oxide memristors.
    Prezioso M; Merrikh-Bayat F; Hoskins BD; Adam GC; Likharev KK; Strukov DB
    Nature; 2015 May; 521(7550):61-4. PubMed ID: 25951284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bio-inspired homogeneous multi-scale place recognition.
    Chen Z; Lowry S; Jacobson A; Hasselmo ME; Milford M
    Neural Netw; 2015 Dec; 72():48-61. PubMed ID: 26576467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using insects to drive mobile robots - hybrid robots bridge the gap between biological and artificial systems.
    Ando N; Kanzaki R
    Arthropod Struct Dev; 2017 Sep; 46(5):723-735. PubMed ID: 28254451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural network architecture for cognitive navigation in dynamic environments.
    Villacorta-Atienza JA; Makarov VA
    IEEE Trans Neural Netw Learn Syst; 2013 Dec; 24(12):2075-87. PubMed ID: 24805224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Event detection and localization for small mobile robots using reservoir computing.
    Antonelo EA; Schrauwen B; Stroobandt D
    Neural Netw; 2008 Aug; 21(6):862-71. PubMed ID: 18662855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imitation and mirror systems in robots through Deep Modality Blending Networks.
    Seker MY; Ahmetoglu A; Nagai Y; Asada M; Oztop E; Ugur E
    Neural Netw; 2022 Feb; 146():22-35. PubMed ID: 34839090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolving mobile robots in simulated and real environments.
    Miglino O; Lund HH; Nolfi S
    Artif Life; 1995; 2(4):417-34. PubMed ID: 8942055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Design of Memristive Circuit for Affective Multi-Associative Learning.
    Wang Z; Wang X; Lu Z; Wu W; Zeng Z
    IEEE Trans Biomed Circuits Syst; 2020 Apr; 14(2):173-185. PubMed ID: 31944964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsically motivated reinforcement learning for human-robot interaction in the real-world.
    Qureshi AH; Nakamura Y; Yoshikawa Y; Ishiguro H
    Neural Netw; 2018 Nov; 107():23-33. PubMed ID: 29631753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Memristive synapses with high reproducibility for flexible neuromorphic networks based on biological nanocomposites.
    Ge J; Li D; Huang C; Zhao X; Qin J; Liu H; Ye W; Xu W; Liu Z; Pan S
    Nanoscale; 2020 Jan; 12(2):720-730. PubMed ID: 31829372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Codevelopmental learning between human and humanoid robot using a dynamic neural-network model.
    Tani J; Nishimoto R; Namikawa J; Ito M
    IEEE Trans Syst Man Cybern B Cybern; 2008 Feb; 38(1):43-59. PubMed ID: 18270081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bio-robots automatic navigation with graded electric reward stimulation based on Reinforcement Learning.
    Zhang C; Sun C; Gao L; Zheng N; Chen W; Zheng X
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():6901-4. PubMed ID: 24111331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unsupervised Hebbian learning experimentally realized with analogue memristive crossbar arrays.
    Hansen M; Zahari F; Kohlstedt H; Ziegler M
    Sci Rep; 2018 Jun; 8(1):8914. PubMed ID: 29892090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.