These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 28696340)

  • 1. Brain-actuated gait trainer with visual and proprioceptive feedback.
    Liu D; Chen W; Lee K; Chavarriaga R; Bouri M; Pei Z; Del R Millán J
    J Neural Eng; 2017 Oct; 14(5):056017. PubMed ID: 28696340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality.
    Vukelić M; Gharabaghi A
    Neuroimage; 2015 May; 111():1-11. PubMed ID: 25665968
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A brain-controlled lower-limb exoskeleton for human gait training.
    Liu D; Chen W; Pei Z; Wang J
    Rev Sci Instrum; 2017 Oct; 88(10):104302. PubMed ID: 29092520
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EEG-Based Lower-Limb Movement Onset Decoding: Continuous Classification and Asynchronous Detection.
    Liu D; Chen W; Lee K; Chavarriaga R; Iwane F; Bouri M; Pei Z; Millan JDR
    IEEE Trans Neural Syst Rehabil Eng; 2018 Aug; 26(8):1626-1635. PubMed ID: 30004882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Boosting lower-limb motor imagery performance through an ensemble method for gait rehabilitation.
    Zhang J; Liu D; Chen W; Pei Z; Wang J
    Comput Biol Med; 2024 Feb; 169():107910. PubMed ID: 38183703
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancement of motor-imagery ability via combined action observation and motor-imagery training with proprioceptive neurofeedback.
    Ono Y; Wada K; Kurata M; Seki N
    Neuropsychologia; 2018 Jun; 114():134-142. PubMed ID: 29698736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients.
    Donati AR; Shokur S; Morya E; Campos DS; Moioli RC; Gitti CM; Augusto PB; Tripodi S; Pires CG; Pereira GA; Brasil FL; Gallo S; Lin AA; Takigami AK; Aratanha MA; Joshi S; Bleuler H; Cheng G; Rudolph A; Nicolelis MA
    Sci Rep; 2016 Aug; 6():30383. PubMed ID: 27513629
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of simultaneous proprioceptive-visual feedback on gait of children with spastic diplegic cerebral palsy.
    Hussein ZA; Salem IA; Ali MS
    J Musculoskelet Neuronal Interact; 2019 Dec; 19(4):500-506. PubMed ID: 31789301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of visual and proprioceptive feedback on sensorimotor rhythms during BCI training.
    Halme HL; Parkkonen L
    PLoS One; 2022; 17(2):e0264354. PubMed ID: 35196360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Brain oscillatory signatures of motor tasks.
    Ramos-Murguialday A; Birbaumer N
    J Neurophysiol; 2015 Jun; 113(10):3663-82. PubMed ID: 25810484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of command signal power distribution, processing delays, and speed scaling on neurally-controlled devices.
    Marathe AR; Taylor DM
    J Neural Eng; 2015 Aug; 12(4):046031. PubMed ID: 26170261
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory threshold neuromuscular electrical stimulation fosters motor imagery performance.
    Corbet T; Iturrate I; Pereira M; Perdikis S; Millán JDR
    Neuroimage; 2018 Aug; 176():268-276. PubMed ID: 29689307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Closed-loop adaptation of neurofeedback based on mental effort facilitates reinforcement learning of brain self-regulation.
    Bauer R; Fels M; Royter V; Raco V; Gharabaghi A
    Clin Neurophysiol; 2016 Sep; 127(9):3156-3164. PubMed ID: 27474965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micro movements of the upper limb in fibromyalgia: The relation to proprioceptive accuracy and visual feedback.
    Bardal EM; Roeleveld K; Ihlen E; Mork PJ
    J Electromyogr Kinesiol; 2016 Feb; 26():1-7. PubMed ID: 26790141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmented multisensory feedback enhances locomotor adaptation in humans with incomplete spinal cord injury.
    Yen SC; Landry JM; Wu M
    Hum Mov Sci; 2014 Jun; 35():80-93. PubMed ID: 24746604
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Brain-Computer Interfaces With Multi-Sensory Feedback for Stroke Rehabilitation: A Case Study.
    Irimia DC; Cho W; Ortner R; Allison BZ; Ignat BE; Edlinger G; Guger C
    Artif Organs; 2017 Nov; 41(11):E178-E184. PubMed ID: 29148137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Online EEG Classification of Covert Speech for Brain-Computer Interfacing.
    Sereshkeh AR; Trott R; Bricout A; Chau T
    Int J Neural Syst; 2017 Dec; 27(8):1750033. PubMed ID: 28830308
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Movement related activity in the μ band of the human EEG during a robot-based proprioceptive task.
    Marini F; Zenzeri J; Pippo V; Morasso P; Campus C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1019-1024. PubMed ID: 31374763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.
    Cuppone AV; Squeri V; Semprini M; Masia L; Konczak J
    PLoS One; 2016; 11(10):e0164511. PubMed ID: 27727321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.