BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 28696366)

  • 1. Role and Therapeutic Targeting of the HGF/MET Pathway in Glioblastoma.
    Cruickshanks N; Zhang Y; Yuan F; Pahuski M; Gibert M; Abounader R
    Cancers (Basel); 2017 Jul; 9(7):. PubMed ID: 28696366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aberrant
    Al-Ghabkari A; Huang B; Park M
    Cells; 2024 Jan; 13(3):. PubMed ID: 38334610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting MET for glioma therapy.
    Awad AJ; Burns TC; Zhang Y; Abounader R
    Neurosurg Focus; 2014 Dec; 37(6):E10. PubMed ID: 25434379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of hepatocyte growth factor/scatter factor and its receptor c-Met in brain tumors: evidence for a role in progression of astrocytic tumors (Review).
    Moriyama T; Kataoka H; Koono M; Wakisaka S
    Int J Mol Med; 1999 May; 3(5):531-6. PubMed ID: 10202187
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Targeting the epithelial to mesenchymal transition in glioblastoma: the emerging role of MET signaling.
    Lee JK; Joo KM; Lee J; Yoon Y; Nam DH
    Onco Targets Ther; 2014; 7():1933-44. PubMed ID: 25364264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of HGF/MET axis in resistance of lung cancer to contemporary management.
    Raghav KP; Gonzalez-Angulo AM; Blumenschein GR
    Transl Lung Cancer Res; 2012 Sep; 1(3):179-93. PubMed ID: 25806180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 17AEP-GA, an HSP90 antagonist, is a potent inhibitor of glioblastoma cell proliferation, survival, migration and invasion.
    Miekus K; Kijowski J; Sekuła M; Majka M
    Oncol Rep; 2012 Nov; 28(5):1903-9. PubMed ID: 22941268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic profiling of a Hepatocyte growth factor-dependent signature for MET-targeted therapy in glioblastoma.
    Johnson J; Ascierto ML; Mittal S; Newsome D; Kang L; Briggs M; Tanner K; Marincola FM; Berens ME; Vande Woude GF; Xie Q
    J Transl Med; 2015 Sep; 13():306. PubMed ID: 26381735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Status of Agents Targeting the HGF/c-Met Axis in Lung Cancer.
    Miranda O; Farooqui M; Siegfried JM
    Cancers (Basel); 2018 Aug; 10(9):. PubMed ID: 30134579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nuclear phosphorylated Y142 β-catenin accumulates in astrocytomas and glioblastomas and regulates cell invasion.
    Náger M; Santacana M; Bhardwaj D; Valls J; Ferrer I; Nogués P; Cantí C; Herreros J
    Cell Cycle; 2015; 14(22):3644-55. PubMed ID: 26654598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an EGFRvIII-JNK2-HGF/c-Met-Signaling Axis Required for Intercellular Crosstalk and Glioblastoma Multiforme Cell Invasion.
    Saunders VC; Lafitte M; Adrados I; Quereda V; Feurstein D; Ling Y; Fallahi M; Rosenberg LH; Duckett DR
    Mol Pharmacol; 2015 Dec; 88(6):962-9. PubMed ID: 26452771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting met mediated epithelial-mesenchymal transition in the treatment of breast cancer.
    Sylvester PW
    Clin Transl Med; 2014 Dec; 3(1):30. PubMed ID: 26932375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Role of EGFR-Met Interactions in the Pathogenesis of Glioblastoma and Resistance to Treatment.
    Guo G; Narayan RN; Horton L; Patel TR; Habib AA
    Curr Cancer Drug Targets; 2017; 17(3):297-302. PubMed ID: 28004613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Overexpression of HGF/MET axis along with p53 inhibition induces de novo glioma formation in mice.
    Qin Y; Musket A; Kou J; Preiszner J; Tschida BR; Qin A; Land CA; Staal B; Kang L; Tanner K; Jiang Y; Schweitzer JB; Largaespada DA; Xie Q
    Neurooncol Adv; 2020; 2(1):vdaa067. PubMed ID: 32642717
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Downregulation of miR‑205 is associated with glioblastoma cell migration, invasion, and the epithelial-mesenchymal transition, by targeting ZEB1 via the Akt/mTOR signaling pathway.
    Chen W; Kong KK; Xu XK; Chen C; Li H; Wang FY; Peng XF; Zhang Z; Li P; Li JL; Li FC
    Int J Oncol; 2018 Feb; 52(2):485-495. PubMed ID: 29345288
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between PTEN and the c-Met pathway in glioblastoma and implications for therapy.
    Li Y; Guessous F; DiPierro C; Zhang Y; Mudrick T; Fuller L; Johnson E; Marcinkiewicz L; Engelhardt M; Kefas B; Schiff D; Kim J; Abounader R
    Mol Cancer Ther; 2009 Feb; 8(2):376-85. PubMed ID: 19190120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Receptor tyrosine kinases as druggable targets in glioblastoma: Do signaling pathways matter?
    Qin A; Musket A; Musich PR; Schweitzer JB; Xie Q
    Neurooncol Adv; 2021; 3(1):vdab133. PubMed ID: 34806012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. miR-504 suppresses mesenchymal phenotype of glioblastoma by directly targeting the FZD7-mediated Wnt-β-catenin pathway.
    Liu Q; Guan Y; Li Z; Wang Y; Liu Y; Cui R; Wang Y
    J Exp Clin Cancer Res; 2019 Aug; 38(1):358. PubMed ID: 31419987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HGF/c-MET targeted therapeutics: novel strategies for cancer medicine.
    Yap TA; Sandhu SK; Alam SM; de Bono JS
    Curr Drug Targets; 2011 Dec; 12(14):2045-58. PubMed ID: 21777195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting the c-Met pathway potentiates glioblastoma responses to gamma-radiation.
    Lal B; Xia S; Abounader R; Laterra J
    Clin Cancer Res; 2005 Jun; 11(12):4479-86. PubMed ID: 15958633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.