These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 28696425)

  • 1. Microbial survival strategies in ancient permafrost: insights from metagenomics.
    Mackelprang R; Burkert A; Haw M; Mahendrarajah T; Conaway CH; Douglas TA; Waldrop MP
    ISME J; 2017 Oct; 11(10):2305-2318. PubMed ID: 28696425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in the Active, Dead, and Dormant Microbial Community Structure across a Pleistocene Permafrost Chronosequence.
    Burkert A; Douglas TA; Waldrop MP; Mackelprang R
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predominance of Anaerobic, Spore-Forming Bacteria in Metabolically Active Microbial Communities from Ancient Siberian Permafrost.
    Liang R; Lau M; Vishnivetskaya T; Lloyd KG; Wang W; Wiggins J; Miller J; Pfiffner S; Rivkina EM; Onstott TC
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31152014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial diversity in European alpine permafrost and active layers.
    Frey B; Rime T; Phillips M; Stierli B; Hajdas I; Widmer F; Hartmann M
    FEMS Microbiol Ecol; 2016 Mar; 92(3):. PubMed ID: 26832204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic reconstruction of fossil and living microorganisms in ancient Siberian permafrost.
    Liang R; Li Z; Lau Vetter MCY; Vishnivetskaya TA; Zanina OG; Lloyd KG; Pfiffner SM; Rivkina EM; Wang W; Wiggins J; Miller J; Hettich RL; Onstott TC
    Microbiome; 2021 May; 9(1):110. PubMed ID: 34001281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shotgun metagenomics reveals distinct functional diversity and metabolic capabilities between 12 000-year-old permafrost and active layers on Muot da Barba Peider (Swiss Alps).
    Perez-Mon C; Qi W; Vikram S; Frossard A; Makhalanyane T; Cowan D; Frey B
    Microb Genom; 2021 Apr; 7(4):. PubMed ID: 33848236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life at the Frozen Limit: Microbial Carbon Metabolism Across a Late Pleistocene Permafrost Chronosequence.
    Leewis MC; Berlemont R; Podgorski DC; Srinivas A; Zito P; Spencer RGM; McFarland J; Douglas TA; Conaway CH; Waldrop M; Mackelprang R
    Front Microbiol; 2020; 11():1753. PubMed ID: 32849382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative activity and functional ecology of permafrost soils and lithic niches in a hyper-arid polar desert.
    Goordial J; Davila A; Greer CW; Cannam R; DiRuggiero J; McKay CP; Whyte LG
    Environ Microbiol; 2017 Feb; 19(2):443-458. PubMed ID: 27129741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial community in ancient permafrost alluvium at the Mammoth Mountain (Eastern Siberia).
    Brouchkov A; Kabilov M; Filippova S; Baturina O; Rogov V; Galchenko V; Mulyukin A; Fursova O; Pogorelko G
    Gene; 2017 Dec; 636():48-53. PubMed ID: 28916375
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for marine origin and microbial-viral habitability of sub-zero hypersaline aqueous inclusions within permafrost near Barrow, Alaska.
    Colangelo-Lillis J; Eicken H; Carpenter SD; Deming JW
    FEMS Microbiol Ecol; 2016 May; 92(5):fiw053. PubMed ID: 26976841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Eight Metagenome-Assembled Genomes Provide Evidence for Microbial Adaptation in 20,000- to 1,000,000-Year-Old Siberian Permafrost.
    Sipes K; Almatari A; Eddie A; Williams D; Spirina E; Rivkina E; Liang R; Onstott TC; Vishnivetskaya TA; Lloyd KG
    Appl Environ Microbiol; 2021 Sep; 87(19):e0097221. PubMed ID: 34288700
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial network, phylogenetic diversity and community membership in the active layer across a permafrost thaw gradient.
    Mondav R; McCalley CK; Hodgkins SB; Frolking S; Saleska SR; Rich VI; Chanton JP; Crill PM
    Environ Microbiol; 2017 Aug; 19(8):3201-3218. PubMed ID: 28574203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of in situ microbial activity and sulphidogenesis in perennially sub-0 °C and hypersaline sediments of a high Arctic permafrost spring.
    Lamarche-Gagnon G; Comery R; Greer CW; Whyte LG
    Extremophiles; 2015 Jan; 19(1):1-15. PubMed ID: 25381577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments.
    Vishnivetskaya T; Kathariou S; McGrath J; Gilichinsky D; Tiedje JM
    Extremophiles; 2000 Jun; 4(3):165-73. PubMed ID: 10879561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial and protozoan dynamics upon thawing and freezing of an active layer permafrost soil.
    Schostag M; Priemé A; Jacquiod S; Russel J; Ekelund F; Jacobsen CS
    ISME J; 2019 May; 13(5):1345-1359. PubMed ID: 30692629
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-centric view of carbon processing in thawing permafrost.
    Woodcroft BJ; Singleton CM; Boyd JA; Evans PN; Emerson JB; Zayed AAF; Hoelzle RD; Lamberton TO; McCalley CK; Hodgkins SB; Wilson RM; Purvine SO; Nicora CD; Li C; Frolking S; Chanton JP; Crill PM; Saleska SR; Rich VI; Tyson GW
    Nature; 2018 Aug; 560(7716):49-54. PubMed ID: 30013118
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial diversity and activity through a permafrost/ground ice core profile from the Canadian high Arctic.
    Steven B; Pollard WH; Greer CW; Whyte LG
    Environ Microbiol; 2008 Dec; 10(12):3388-403. PubMed ID: 19025556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confocal Raman microspectroscopy reveals a convergence of the chemical composition in methanogenic archaea from a Siberian permafrost-affected soil.
    Serrano P; Hermelink A; Lasch P; de Vera JP; König N; Burckhardt O; Wagner D
    FEMS Microbiol Ecol; 2015 Dec; 91(12):. PubMed ID: 26499486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature effects on net greenhouse gas production and bacterial communities in arctic thaw ponds.
    Negandhi K; Laurion I; Lovejoy C
    FEMS Microbiol Ecol; 2016 Aug; 92(8):. PubMed ID: 27288196
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of changing temperature in microbial metabolic processes during permafrost thaw.
    Messan KS; Jones RM; Doherty SJ; Foley K; Douglas TA; Barbato RA
    PLoS One; 2020; 15(4):e0232169. PubMed ID: 32353013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.