BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28696426)

  • 21. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy of a single endothelial cell.
    Wrobel TP; Marzec KM; Majzner K; Kochan K; Bartus M; Chlopicki S; Baranska M
    Analyst; 2012 Sep; 137(18):4135-9. PubMed ID: 22854681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Infrared spectroscopy of human tissue. II. A comparative study of spectra of biopsies of cervical squamous epithelium and of exfoliated cervical cells.
    Chiriboga L; Xie P; Vigorita V; Zarou D; Zakim D; Diem M
    Biospectroscopy; 1998; 4(1):55-9. PubMed ID: 9547015
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Infrared spectroscopy of normal and abnormal cervical smears: evaluation by principal component analysis.
    Cohenford MA; Godwin TA; Cahn F; Bhandare P; Caputo TA; Rigas B
    Gynecol Oncol; 1997 Jul; 66(1):59-65. PubMed ID: 9234922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chemical imaging of live cancer cells in the natural aqueous environment.
    Kuimova MK; Chan KL; Kazarian SG
    Appl Spectrosc; 2009 Feb; 63(2):164-71. PubMed ID: 19215645
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biospectroscopy insights into the multi-stage process of cervical cancer development: probing for spectral biomarkers in cytology to distinguish grades.
    Purandare NC; Patel II; Trevisan J; Bolger N; Kelehan R; von Bünau G; Martin-Hirsch PL; Prendiville WJ; Martin FL
    Analyst; 2013 Jul; 138(14):3909-16. PubMed ID: 23338619
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological applications of synchrotron radiation infrared spectromicroscopy.
    Marcelli A; Cricenti A; Kwiatek WM; Petibois C
    Biotechnol Adv; 2012; 30(6):1390-404. PubMed ID: 22401782
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fourier-transform infrared spectroscopy coupled with a classification machine for the analysis of blood plasma or serum: a novel diagnostic approach for ovarian cancer.
    Gajjar K; Trevisan J; Owens G; Keating PJ; Wood NJ; Stringfellow HF; Martin-Hirsch PL; Martin FL
    Analyst; 2013 Jul; 138(14):3917-26. PubMed ID: 23325355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mid-infrared near-field spectroscopy.
    Amarie S; Ganz T; Keilmann F
    Opt Express; 2009 Nov; 17(24):21794-801. PubMed ID: 19997423
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distinguishing nuclei-specific benzo[a]pyrene-induced effects from whole-cell alterations in MCF-7 cells using Fourier-transform infrared spectroscopy.
    Obinaju BE; Fullwood NJ; Martin FL
    Toxicology; 2015 Sep; 335():27-34. PubMed ID: 26148868
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated cervical precancerous cells screening system based on Fourier transform infrared spectroscopy features.
    Jusman Y; Mat Isa NA; Ng SC; Hasikin K; Abu Osman NA
    J Biomed Opt; 2016 Jul; 21(7):75005. PubMed ID: 27403606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Broadband near-field mid-infrared spectroscopy and application to phonon resonances in quartz.
    Ishikawa M; Katsura M; Nakashima S; Ikemoto Y; Okamura H
    Opt Express; 2012 May; 20(10):11064-72. PubMed ID: 22565729
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemically resolved imaging of biological cells and thin films by infrared scanning near-field optical microscopy.
    Cricenti A; Generosi R; Luce M; Perfetti P; Margaritondo G; Talley D; Sanghera JS; Aggarwal ID; Tolk NH; Congiu-Castellano A; Rizzo MA; Piston DW
    Biophys J; 2003 Oct; 85(4):2705-10. PubMed ID: 14507733
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fast infrared chemical imaging with a quantum cascade laser.
    Yeh K; Kenkel S; Liu JN; Bhargava R
    Anal Chem; 2015 Jan; 87(1):485-93. PubMed ID: 25474546
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Attenuated total internal reflection infrared microscopy of multilayer plastic packaging foils.
    van Dalen G; Heussen PC; den Adel R; Hoeve RB
    Appl Spectrosc; 2007 Jun; 61(6):593-602. PubMed ID: 17650369
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of blood components from cervical smears: implications for cancer diagnosis using FTIR spectroscopy.
    Romeo MJ; Wood BR; Quinn MA; McNaughton D
    Biopolymers; 2003; 72(1):69-76. PubMed ID: 12400093
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantitative Measurement of Local Infrared Absorption and Dielectric Function with Tip-Enhanced Near-Field Microscopy.
    Govyadinov AA; Amenabar I; Huth F; Carney PS; Hillenbrand R
    J Phys Chem Lett; 2013 May; 4(9):1526-31. PubMed ID: 26282309
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Live endothelial cells imaged by Scanning Near-field Optical Microscopy (SNOM): capabilities and challenges.
    Bulat K; Rygula A; Szafraniec E; Ozaki Y; Baranska M
    J Biophotonics; 2017 Jun; 10(6-7):928-938. PubMed ID: 27545579
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-throughput quantum cascade laser (QCL) spectral histopathology: a practical approach towards clinical translation.
    Pilling MJ; Henderson A; Bird B; Brown MD; Clarke NW; Gardner P
    Faraday Discuss; 2016 Jun; 187():135-54. PubMed ID: 27095185
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of transflection and transmission FTIR imaging measurements performed on differentially fixed tissue sections.
    Perez-Guaita D; Heraud P; Marzec KM; de la Guardia M; Kiupel M; Wood BR
    Analyst; 2015 Apr; 140(7):2376-82. PubMed ID: 25695358
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Broadband infrared vibrational nano-spectroscopy using thermal blackbody radiation.
    O'Callahan BT; Lewis WE; Möbius S; Stanley JC; Muller EA; Raschke MB
    Opt Express; 2015 Dec; 23(25):32063-74. PubMed ID: 26698997
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.