BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28696426)

  • 41. Recent applications of ATR FTIR spectroscopy and imaging to proteins.
    Glassford SE; Byrne B; Kazarian SG
    Biochim Biophys Acta; 2013 Dec; 1834(12):2849-58. PubMed ID: 23928299
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of a quantum cascade laser aperture scanning near-field optical microscope to the study of a cancer cell.
    Smith CI; Siggel-King MRF; Ingham J; Harrison P; Martin DS; Varro A; Pritchard DM; Surman M; Barrett S; Weightman P
    Analyst; 2018 Dec; 143(24):5912-5917. PubMed ID: 30191233
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Label-free imaging of lipid-rich biological tissues by mid-infrared photoacoustic microscopy.
    He Y; Shi J; Pleitez MA; Maslov K; Wagenaar DA; Wang LV
    J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33118344
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Imaging of optical disc using reflection-mode scattering-type scanning near-field optical microscopy.
    Yamaguchi M; Sasaki Y; Sasaki H; Konada T; Horikawa Y; Ebina A; Umezawa T; Horiguchi T
    J Microsc; 1999; 194(Pt 2-3):552-7. PubMed ID: 11388305
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Near-field infrared nanoscopic study of EUV- and e-beam-exposed hydrogen silsesquioxane photoresist.
    Kim J; Lee JK; Chae B; Ahn J; Lee S
    Nano Converg; 2022 Dec; 9(1):53. PubMed ID: 36459274
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Novel approaches for scanning near-field optical microscopy imaging of oligodendrocytes in culture.
    Trevisan E; Fabbretti E; Medic N; Troian B; Prato S; Vita F; Zabucchi G; Zweyer M
    Neuroimage; 2010 Jan; 49(1):517-24. PubMed ID: 19632336
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spectroscopy with scanning near-field optical microscopy using photon tunnelling mode.
    Takahashi S; Futamata M; Kojima I
    J Microsc; 1999; 194(Pt 2-3):519-22. PubMed ID: 11388298
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A de-waxing methodology for scanning probe microscopy.
    Al Jedani S; Smith CI; Gunning P; Ellis BG; Gardner P; Barrett SD; Triantafyllou A; Risk JM; Weightman P
    Anal Methods; 2020 Jul; 12(26):3397-3403. PubMed ID: 32930228
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nano-FTIR chemical mapping of minerals in biological materials.
    Amarie S; Zaslansky P; Kajihara Y; Griesshaber E; Schmahl WW; Keilmann F
    Beilstein J Nanotechnol; 2012; 3():312-23. PubMed ID: 22563528
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Infrared spectroscopy of human tissue. IV. Detection of dysplastic and neoplastic changes of human cervical tissue via infrared microscopy.
    Chiriboga L; Xie P; Yee H; Zarou D; Zakim D; Diem M
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):219-29. PubMed ID: 9551653
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers.
    Aguilar CA; Lu Y; Mao S; Chen S
    Biomaterials; 2005 Dec; 26(36):7642-9. PubMed ID: 15950279
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Large scale infrared imaging of tissue micro arrays (TMAs) using a tunable Quantum Cascade Laser (QCL) based microscope.
    Bassan P; Weida MJ; Rowlette J; Gardner P
    Analyst; 2014 Aug; 139(16):3856-9. PubMed ID: 24965124
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Detailed account of confounding factors in interpretation of FTIR spectra of exfoliated cervical cells.
    Wong PT; Senterman MK; Jackli P; Wong RK; Salib S; Campbell CE; Feigel R; Faught W; Fung Kee Fung M
    Biopolymers; 2002; 67(6):376-86. PubMed ID: 12209445
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Near-field imaging and spectroscopy of locally strained GaN using an IR broadband laser.
    Bensmann S; Gaußmann F; Lewin M; Wüppen J; Nyga S; Janzen C; Jungbluth B; Taubner T
    Opt Express; 2014 Sep; 22(19):22369-81. PubMed ID: 25321708
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The application of scanning near field optical imaging to the study of human sperm morphology.
    Andolfi L; Trevisan E; Troian B; Prato S; Boscolo R; Giolo E; Luppi S; Martinelli M; Ricci G; Zweyer M
    J Nanobiotechnology; 2015 Jan; 13():2. PubMed ID: 25591971
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Discrimination of a transformation phenotype in Syrian golden hamster embryo (SHE) cells using ATR-FTIR spectroscopy.
    Walsh MJ; Bruce SW; Pant K; Carmichael PL; Scott AD; Martin FL
    Toxicology; 2009 Apr; 258(1):33-8. PubMed ID: 19167452
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Far-Infrared Near-Field Optical Imaging and Kelvin Probe Force Microscopy of Laser-Crystallized and -Amorphized Phase Change Material Ge
    Barnett J; Wehmeier L; Heßler A; Lewin M; Pries J; Wuttig M; Klopf JM; Kehr SC; Eng LM; Taubner T
    Nano Lett; 2021 Nov; 21(21):9012-9020. PubMed ID: 34665620
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Attenuated total reflection Fourier-transform infrared (ATR-FTIR) imaging of tissues and live cells.
    Andrew Chan KL; Kazarian SG
    Chem Soc Rev; 2016 Apr; 45(7):1850-64. PubMed ID: 26488803
    [TBL] [Abstract][Full Text] [Related]  

  • 59. New opportunities in micro- and macro-attenuated total reflection infrared spectroscopic imaging: spatial resolution and sampling versatility.
    Chan KL; Kazarian SG
    Appl Spectrosc; 2003 Apr; 57(4):381-9. PubMed ID: 14658633
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Fourier transform infrared imaging analysis in discrimination studies of squamous cell carcinoma.
    Pallua JD; Pezzei C; Zelger B; Schaefer G; Bittner LK; Huck-Pezzei VA; Schoenbichler SA; Hahn H; Kloss-Brandstaetter A; Kloss F; Bonn GK; Huck CW
    Analyst; 2012 Sep; 137(17):3965-74. PubMed ID: 22792538
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.