BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 28696426)

  • 61. Quantitative determination of pharmaceutical drug formulations by near-infrared spectroscopic imaging.
    Kolomiets O; Hoffmann U; Geladi P; Siesler HW
    Appl Spectrosc; 2008 Nov; 62(11):1200-8. PubMed ID: 19007460
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Robust classification of low-grade cervical cytology following analysis with ATR-FTIR spectroscopy and subsequent application of self-learning classifier eClass.
    Kelly JG; Angelov PP; Trevisan J; Vlachopoulou A; Paraskevaidis E; Martin-Hirsch PL; Martin FL
    Anal Bioanal Chem; 2010 Nov; 398(5):2191-201. PubMed ID: 20857283
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Analysis of light scattering from human breast tissue using a custom dual-optical scanning near-field optical microscope.
    Kyle JR; Kyle MD; Raghavan R; Budak G; Ozkan CS; Ozkan M
    J Biophotonics; 2011 Mar; 4(3):193-205. PubMed ID: 20740520
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Denoising influence on discrete frequency classification results for quantum cascade laser based infrared microscopy.
    Koziol P; Raczkowska MK; Skibinska J; McCollum NJ; Urbaniak-Wasik S; Paluszkiewicz C; Kwiatek WM; Wrobel TP
    Anal Chim Acta; 2019 Mar; 1051():24-31. PubMed ID: 30661616
    [TBL] [Abstract][Full Text] [Related]  

  • 65. ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems.
    Kazarian SG; Chan KL
    Analyst; 2013 Apr; 138(7):1940-51. PubMed ID: 23400222
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Non-contact micro-cantilevers detect photothermally induced vibrations that can segregate different categories of exfoliative cervical cytology.
    Hammiche A; Walsh MJ; Pollock HM; Martin-Hirsch PL; Martin FL
    J Biochem Biophys Methods; 2007 Jun; 70(4):675-7. PubMed ID: 17320188
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Investigation of the potential utility of single-bounce attenuated total reflectance Fourier transform infrared spectroscopy in the analysis of distilled liquors and wines.
    Cocciardi RA; Ismail AA; Sedman J
    J Agric Food Chem; 2005 Apr; 53(8):2803-9. PubMed ID: 15826022
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Near-field imaging and nano-Fourier-transform infrared spectroscopy using broadband synchrotron radiation.
    Hermann P; Hoehl A; Patoka P; Huth F; Rühl E; Ulm G
    Opt Express; 2013 Feb; 21(3):2913-9. PubMed ID: 23481749
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Infrared Imaging and Spectroscopy Beyond the Diffraction Limit.
    Centrone A
    Annu Rev Anal Chem (Palo Alto Calif); 2015; 8():101-26. PubMed ID: 26001952
    [TBL] [Abstract][Full Text] [Related]  

  • 70. [Structural variation of o-amino-benzoic acid induced by free electron laser].
    Li Y; Xu YZ; Yang LM; Weng SF; Gao HC; Wu JG; Wang MK; Yang XP; Li YG; Fan YH; Wu G
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Jun; 22(3):384-6. PubMed ID: 12938310
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Infrared spectroscopy of human tissue. I. Differentiation and maturation of epithelial cells in the human cervix.
    Chiriboga L; Xie P; Yee H; Vigorita V; Zarou D; Zakim D; Diem M
    Biospectroscopy; 1998; 4(1):47-53. PubMed ID: 9547014
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Monitoring cell cycle distributions in MCF-7 cells using near-field photothermal microspectroscopy.
    Hammiche A; German MJ; Hewitt R; Pollock HM; Martin FL
    Biophys J; 2005 May; 88(5):3699-706. PubMed ID: 15722424
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Historical perspective and modern applications of Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR).
    Blum MM; John H
    Drug Test Anal; 2012; 4(3-4):298-302. PubMed ID: 22113892
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Near- and far-field spectroscopic imaging investigation of resonant square-loop infrared metasurfaces.
    D' Archangel J; Tucker E; Kinzel E; Muller EA; Bechtel HA; Martin MC; Raschke MB; Boreman G
    Opt Express; 2013 Jul; 21(14):17150-60. PubMed ID: 23938562
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Infrared-spectroscopic, dynamic near-field microscopy of living cells and nanoparticles in water.
    Kaltenecker KJ; Gölz T; Bau E; Keilmann F
    Sci Rep; 2021 Nov; 11(1):21860. PubMed ID: 34750511
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Unsupervised organization of cervical cells using bright-field and single-shot digital holographic microscopy.
    Mangal J; Monga R; Mathur SR; Dinda AK; Joseph J; Ahlawat S; Khare K
    J Biophotonics; 2019 Aug; 12(8):e201800409. PubMed ID: 30938076
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Medical application of an infrared free-electron laser: selective removal of cholesterol ester in carotid artery atheromatous plaques.
    Nakajima Y; Iwatsuki K; Ishii K; Suzuki S; Fujinaka T; Yoshimine T; Awazu K
    J Neurosurg; 2006 Mar; 104(3):426-8. PubMed ID: 16572656
    [TBL] [Abstract][Full Text] [Related]  

  • 78. SNOM on cell thin sections: observation of Jurkat and MDAMB453 cells.
    Zweyer M; Troian B; Spreafico V; Prato S
    J Microsc; 2008 Mar; 229(Pt 3):440-6. PubMed ID: 18331492
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Preliminary investigations into macroscopic attenuated total reflection-fourier transform infrared imaging of intact spherical domains: spatial resolution and image distortion.
    Everall NJ; Priestnall IM; Clarke F; Jayes L; Poulter G; Coombs D; George MW
    Appl Spectrosc; 2009 Mar; 63(3):313-20. PubMed ID: 19281647
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Scanning electron microscopy of normal exfoliated squamous cervical cells.
    Llanes AT; Farre CB; Ferenczy A; Richart RM
    Acta Cytol; 1973; 17(6):507-9. PubMed ID: 4585158
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.