These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

32 related articles for article (PubMed ID: 28696440)

  • 1. Strong Interfacial Chemical Bonding in Regulating Electron Transfer and Stabilizing Catalytic Sites in a Metal-Semiconductor Schottky Junction for Enhanced Photocatalysis.
    Yang X; Ren L; Jiang D; Yin L; Li Z; Yuan Y
    Small; 2024 Apr; 20(16):e2308408. PubMed ID: 38032173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of interfacial defects on the electronic properties of graphene/g-GaN heterostructures.
    Deng Z; Wang X; Cui J
    RSC Adv; 2019 Apr; 9(24):13418-13423. PubMed ID: 35519598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The External Electric Field-Induced Tunability of the Schottky Barrier Height in Graphene/AlN Interface: A Study by First-Principles.
    Liu X; Zhang Z; Lv B; Ding Z; Luo Z
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32916951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial Properties of Monolayer and Bilayer MoS2 Contacts with Metals: Beyond the Energy Band Calculations.
    Zhong H; Quhe R; Wang Y; Ni Z; Ye M; Song Z; Pan Y; Yang J; Yang L; Lei M; Shi J; Lu J
    Sci Rep; 2016 Mar; 6():21786. PubMed ID: 26928583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structures and Electronic Properties of Different CH3NH3PbI3/TiO2 Interface: A First-Principles Study.
    Geng W; Tong CJ; Liu J; Zhu W; Lau WM; Liu LM
    Sci Rep; 2016 Feb; 6():20131. PubMed ID: 26846401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Atomically Resolved Schottky Barrier Height Approach for Bridging the Gap between Theory and Experiment at Metal-Semiconductor Heterojunctions.
    Sorkin V; Zhou H; Yu ZG; Ang KW; Zhang YW
    ACS Appl Mater Interfaces; 2024 May; 16(17):22166-22176. PubMed ID: 38648115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial chemical bonding-mediated ionic resistive switching.
    Moon H; Zade V; Kang HS; Han JW; Lee E; Hwang CS; Lee MH
    Sci Rep; 2017 Apr; 7(1):1264. PubMed ID: 28455537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring the Brønsted acidity of Ti-OH species by regulating Pt-TiO
    Meng F; Yang X; Zhao S; Li Z; Qi Y; Yang H; Qin Y; Zhang B
    ChemSusChem; 2024 Apr; 17(7):e202301410. PubMed ID: 38117254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Transition Metal Substituents on Interfacial and Electronic Structure of CH
    Guo Y; Xue Y; Li X; Li C; Song H; Niu Y; Liu H; Mai X; Zhang J; Guo Z
    Nanomaterials (Basel); 2019 Jul; 9(7):. PubMed ID: 31266249
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling hot electron flux and catalytic selectivity with nanoscale metal-oxide interfaces.
    Lee SW; Kim JM; Park W; Lee H; Lee GR; Jung Y; Jung YS; Park JY
    Nat Commun; 2021 Jan; 12(1):40. PubMed ID: 33397946
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic-Scale Distribution and Evolution of Strain in Pt Nanoparticles Grown on MoS
    Zhu Y; Zhao Z; Xu Y; Wang R
    Small Methods; 2024 May; ():e2400179. PubMed ID: 38763915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomic-Scale Interface for Pt Nanoparticles on SrTiO
    Chen Y; Das A; Duplessis ID; Keane DT; Bedzyk MJ
    ACS Appl Mater Interfaces; 2024 May; 16(20):26862-26869. PubMed ID: 38728589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interfacial Optimization for AlN/Diamond Heterostructures via Machine Learning Potential Molecular Dynamics Investigation of the Mechanical Properties.
    Qi Z; Sun X; Sun Z; Wang Q; Zhang D; Liang K; Li R; Zou D; Li L; Wu G; Shen W; Liu S
    ACS Appl Mater Interfaces; 2024 May; 16(21):27998-28007. PubMed ID: 38759105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unveiling Atomic-Scale Product Selectivity at the Cocatalyst-TiO
    Liu Y; Li H; Han R; Ouyang Q; Guo Y; Zhang Z; Mu L; Sainio S; Nordlund D; Zan L; Jiang Z
    Small Methods; 2024 Mar; 8(3):e2301120. PubMed ID: 38009509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adducing Knowledge Capabilities of Instrumental Techniques Through the Exploration of Heterostructures' Modification Methods.
    Underwood TM; Robinson RS
    Chemphyschem; 2022 Nov; 23(22):e202200241. PubMed ID: 35965256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First principles study of Schottky barriers at Ga
    Xu R; Lin N; Jia Z; Liu Y; Wang H; Yu Y; Zhao X
    RSC Adv; 2020 Apr; 10(25):14746-14752. PubMed ID: 35497154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Schottky barrier and band edge engineering via the interfacial structure and strain for the Pt/TiO
    Ma X; Wu X; Wang Y; Dai Y
    Phys Chem Chem Phys; 2017 Jul; 19(28):18750-18756. PubMed ID: 28696440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface Schottky barrier engineering via strain in metal-semiconductor composites.
    Ma X; Dai Y; Yu L; Huang B
    Nanoscale; 2016 Jan; 8(3):1352-9. PubMed ID: 26511292
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of energy band alignments and interfacial properties of rutile NMO
    Yang C; Zhao ZY
    Phys Chem Chem Phys; 2017 Nov; 19(43):29583-29593. PubMed ID: 29082994
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.