These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 28696478)

  • 1. Unidirectional motion of a camphor disk on water forced by interactions between surface camphor concentration and dynamically changing boundaries.
    Gorecki J; Kitahata H; Suematsu NJ; Koyano Y; Skrobanska P; Gryciuk M; Malecki M; Tanabe T; Yamamoto H; Nakata S
    Phys Chem Chem Phys; 2017 Jul; 19(28):18767-18772. PubMed ID: 28696478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of the Rotation Direction for a Camphor Disk Resulting from Chiral Asymmetry of a Water Chamber.
    Nakata S; Yamamoto H; Koyano Y; Yamanaka O; Sumino Y; Suematsu NJ; Kitahata H; Skrobanska P; Gorecki J
    J Phys Chem B; 2016 Sep; 120(34):9166-72. PubMed ID: 27500909
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronized motion of a mobile boundary driven by a camphor fragment.
    Nakata S; Doi Y; Kitahata H
    J Colloid Interface Sci; 2004 Nov; 279(2):503-8. PubMed ID: 15464817
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bifurcation phenomena of two self-propelled camphor disks on an annular field depending on system length.
    Nishi K; Wakai K; Ueda T; Yoshii M; Ikura YS; Nishimori H; Nakata S; Nagayama M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022910. PubMed ID: 26382479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-motion of a camphor disk on an aqueous phase depending on the alkyl chain length of sulfate surfactants.
    Nakata S; Murakami M
    Langmuir; 2010 Feb; 26(4):2414-7. PubMed ID: 19877701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rotational motion of a camphor disk in a circular region.
    Koyano Y; Suematsu NJ; Kitahata H
    Phys Rev E; 2019 Feb; 99(2-1):022211. PubMed ID: 30934219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Propelled Motion of a Camphor Disk on a Photosensitive Amphiphilic Molecular Layer.
    Nakata S; Nasu K; Irie Y; Hatano S
    Langmuir; 2019 Mar; 35(12):4233-4237. PubMed ID: 30807697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spontaneous motion of an elliptic camphor particle.
    Kitahata H; Iida K; Nagayama M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):010901. PubMed ID: 23410272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bifurcation in the angular velocity of a circular disk propelled by symmetrically distributed camphor pills.
    Koyano Y; Kitahata H; Gryciuk M; Akulich N; Gorecka A; Malecki M; Gorecki J
    Chaos; 2019 Jan; 29(1):013125. PubMed ID: 30709118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Period of Oscillatory Motion of a Camphor Boat Determined by the Dissolution and Diffusion of Camphor Molecules.
    Tenno R; Gunjima Y; Yoshii M; Kitahata H; Gorecki J; Suematsu NJ; Nakata S
    J Phys Chem B; 2018 Mar; 122(9):2610-2615. PubMed ID: 29405712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristic oscillatory motion of a camphor boat sensitive to physicochemical environment.
    Nakata S; Yoshii M; Matsuda Y; Suematsu NJ
    Chaos; 2015 Jun; 25(6):064610. PubMed ID: 26117135
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pairing-induced motion of source and inert particles driven by surface tension.
    Ishikawa H; Koyano Y; Kitahata H; Sumino Y
    Phys Rev E; 2022 Aug; 106(2-1):024604. PubMed ID: 36109978
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mode switching of a self-propelled camphor disk sensitive to the photoisomerization of a molecular layer on water.
    Nakata S; Miyaji T; Matsuda Y; Yoshii M; Abe M
    Langmuir; 2014 Jul; 30(25):7353-7. PubMed ID: 24901870
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oscillatory Motion of a Camphor Object on a Surfactant Solution.
    Xu Y; Takayama N; Er H; Nakata S
    J Phys Chem B; 2021 Feb; 125(6):1674-1679. PubMed ID: 33508193
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Motion modes of two self-propelled camphor boats on the surface of a surfactant-containing solution.
    Karasawa Y; Nomoto T; Chiari L; Toyota T; Fujinami M
    J Colloid Interface Sci; 2018 Feb; 511():184-192. PubMed ID: 29024858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synchronized motion of the water surfaces around two fixed camphor disks.
    Kitahata H; Kawata K; Takahashi S; Nakamura M; Sumino Y; Nakata S
    J Colloid Interface Sci; 2010 Nov; 351(1):299-303. PubMed ID: 20705301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Periodic oscillations in a string of camphor infused disks.
    Tiwari I; Parmananda P; Chelakkot R
    Soft Matter; 2020 Dec; 16(45):10334-10344. PubMed ID: 33237113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between the size of a camphor-driven rotor and its angular velocity.
    Koyano Y; Gryciuk M; Skrobanska P; Malecki M; Sumino Y; Kitahata H; Gorecki J
    Phys Rev E; 2017 Jul; 96(1-1):012609. PubMed ID: 29347181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative estimation of the parameters for self-motion driven by difference in surface tension.
    Suematsu NJ; Sasaki T; Nakata S; Kitahata H
    Langmuir; 2014 Jul; 30(27):8101-8. PubMed ID: 24934964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Propelled Motion of a Camphor Disk on a Nervonic Acid Molecular Layer and Its Dependence on Phase Transition.
    Nakata S; Fujita R
    J Phys Chem B; 2020 Jul; 124(26):5525-5529. PubMed ID: 32501008
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.