These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 28696675)

  • 1. Fundamentally Addressing Bromine Storage through Reversible Solid-State Confinement in Porous Carbon Electrodes: Design of a High-Performance Dual-Redox Electrochemical Capacitor.
    Yoo SJ; Evanko B; Wang X; Romelczyk M; Taylor A; Ji X; Boettcher SW; Stucky GD
    J Am Chem Soc; 2017 Jul; 139(29):9985-9993. PubMed ID: 28696675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient Charge Storage in Dual-Redox Electrochemical Capacitors through Reversible Counterion-Induced Solid Complexation.
    Evanko B; Yoo SJ; Chun SE; Wang X; Ji X; Boettcher SW; Stucky GD
    J Am Chem Soc; 2016 Aug; 138(30):9373-6. PubMed ID: 27442447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Viologen/Bromide Dual-Redox Electrochemical Capacitor with Two-Electron Reduction of Viologen.
    Luo H; Wang G; Lu J; Zhuang L; Xiao L
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41215-41221. PubMed ID: 31609584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the Operating Mechanism of Aqueous Pentyl Viologen/Bromide Redox-Enhanced Electrochemical Capacitors with Ordered Mesoporous Carbon Electrodes.
    Calcagno G; Evanko B; Stucky GD; Ahlberg E; Yoo SJ; Palmqvist AEC
    ACS Appl Mater Interfaces; 2022 May; 14(18):20349-20357. PubMed ID: 34590838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors.
    Sassin MB; Chervin CN; Rolison DR; Long JW
    Acc Chem Res; 2013 May; 46(5):1062-74. PubMed ID: 22380783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of aqueous redox-enhanced electrochemical capacitors with high specific energies and slow self-discharge.
    Chun SE; Evanko B; Wang X; Vonlanthen D; Ji X; Stucky GD; Boettcher SW
    Nat Commun; 2015 Aug; 6():7818. PubMed ID: 26239891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical Capacitors with Confined Redox Electrolytes and Porous Electrodes.
    Yang N; Yu S; Zhang W; Cheng HM; Simon P; Jiang X
    Adv Mater; 2022 Aug; 34(34):e2202380. PubMed ID: 35413141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Energy Density Aqueous Electrochemical Capacitors with a KI-KOH Electrolyte.
    Wang X; Chandrabose RS; Chun SE; Zhang T; Evanko B; Jian Z; Boettcher SW; Stucky GD; Ji X
    ACS Appl Mater Interfaces; 2015 Sep; 7(36):19978-85. PubMed ID: 26310453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Chlorine-Based Redox Electrochemical Capacitor.
    Li J; Hu T; Wang Y; Chen S; Wang C; Zhang D; Sun Z; Li F
    ACS Appl Mater Interfaces; 2022 Jun; 14(21):24396-24403. PubMed ID: 35580287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemical Double-Layer Capacitor Energized by Adding an Ambipolar Organic Redox Radical into the Electrolyte.
    Hu L; Shi C; Guo K; Zhai T; Li H; Wang Y
    Angew Chem Int Ed Engl; 2018 Jul; 57(27):8214-8218. PubMed ID: 29797542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of Polyiodide Redox Species in Porous Carbon for Battery-Like Electrodes in Eco-Friendly Hybrid Electrochemical Capacitors.
    Abbas Q; Fitzek H; Schröttner H; Dsoke S; Gollas B
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31623401
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox-Active Hydrogel Polymer Electrolytes with Different pH Values for Enhancing the Energy Density of the Hybrid Solid-State Supercapacitor.
    Tang X; Lui YH; Merhi AR; Chen B; Ding S; Zhang B; Hu S
    ACS Appl Mater Interfaces; 2017 Dec; 9(51):44429-44440. PubMed ID: 29206439
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New generation "nanohybrid supercapacitor".
    Naoi K; Naoi W; Aoyagi S; Miyamoto J; Kamino T
    Acc Chem Res; 2013 May; 46(5):1075-83. PubMed ID: 22433167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bifunctionally Electrocatalytic Bromine Redox Reaction by Single-Atom Catalysts for High-Performance Zinc Batteries.
    Chen S; Peng C; Zhu D; Zhi C
    Adv Mater; 2024 Nov; 36(46):e2409810. PubMed ID: 39328093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superelastic Few-Layer Carbon Foam Made from Natural Cotton for All-Solid-State Electrochemical Capacitors.
    Lin T; Liu F; Xu F; Bi H; Du Y; Tang Y; Huang F
    ACS Appl Mater Interfaces; 2015 Nov; 7(45):25306-12. PubMed ID: 26517402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.
    Duan W; Vemuri RS; Hu D; Yang Z; Wei X
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes.
    Navalpotro P; Sierra N; Trujillo C; Montes I; Palma J; Marcilla R
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41246-41256. PubMed ID: 30398052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding performance limitation and suppression of leakage current or self-discharge in electrochemical capacitors: a review.
    Ike IS; Sigalas I; Iyuke S
    Phys Chem Chem Phys; 2016 Jan; 18(2):661-80. PubMed ID: 26659405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.