These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 28696675)
41. A High-Performance Aqueous Zinc-Bromine Static Battery. Gao L; Li Z; Zou Y; Yin S; Peng P; Shao Y; Liang X iScience; 2020 Aug; 23(8):101348. PubMed ID: 32711343 [TBL] [Abstract][Full Text] [Related]
42. Enhanced Performance of Zn/Br Flow Battery Using Jiménez-Blasco U; Moreno E; Cólera M; Díaz-Carrasco P; Arrebola JC; Caballero A; Morales J; Vargas ÓA Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502193 [TBL] [Abstract][Full Text] [Related]
43. High performance solid-state electric double layer capacitor from redox mediated gel polymer electrolyte and renewable tamarind fruit shell derived porous carbon. Senthilkumar ST; Selvan RK; Melo JS; Sanjeeviraja C ACS Appl Mater Interfaces; 2013 Nov; 5(21):10541-50. PubMed ID: 24164312 [TBL] [Abstract][Full Text] [Related]
44. Sodium-Ion Hybrid Capacitor of High Power and Energy Density. Yuan Y; Wang C; Lei K; Li H; Li F; Chen J ACS Cent Sci; 2018 Sep; 4(9):1261-1265. PubMed ID: 30276261 [TBL] [Abstract][Full Text] [Related]
45. A Redox-Active Binder for Electrochemical Capacitor Electrodes. Benoit C; Demeter D; Bélanger D; Cougnon C Angew Chem Int Ed Engl; 2016 Apr; 55(17):5318-21. PubMed ID: 26997572 [TBL] [Abstract][Full Text] [Related]
46. Ion dynamics in porous carbon electrodes in supercapacitors using in situ infrared spectroelectrochemistry. Richey FW; Dyatkin B; Gogotsi Y; Elabd YA J Am Chem Soc; 2013 Aug; 135(34):12818-26. PubMed ID: 23915377 [TBL] [Abstract][Full Text] [Related]
47. Metal-free aqueous redox capacitor via proton rocking-chair system in an organic-based couple. Tomai T; Mitani S; Komatsu D; Kawaguchi Y; Honma I Sci Rep; 2014 Jan; 4():3591. PubMed ID: 24395117 [TBL] [Abstract][Full Text] [Related]
48. A metal-free organic-inorganic aqueous flow battery. Huskinson B; Marshak MP; Suh C; Er S; Gerhardt MR; Galvin CJ; Chen X; Aspuru-Guzik A; Gordon RG; Aziz MJ Nature; 2014 Jan; 505(7482):195-8. PubMed ID: 24402280 [TBL] [Abstract][Full Text] [Related]
49. Redox-Mediator-Enhanced Electrochemical Capacitors: Recent Advances and Future Perspectives. Hu L; Zhai T; Li H; Wang Y ChemSusChem; 2019 Mar; 12(6):1118-1132. PubMed ID: 30427120 [TBL] [Abstract][Full Text] [Related]
50. Engineering the Pores of Biomass-Derived Carbon: Insights for Achieving Ultrahigh Stability at High Power in High-Energy Supercapacitors. Thangavel R; Kaliyappan K; Ramasamy HV; Sun X; Lee YS ChemSusChem; 2017 Jul; 10(13):2805-2815. PubMed ID: 28453182 [TBL] [Abstract][Full Text] [Related]
51. The influences of operating conditions and design configurations on the performance of symmetric electrochemical capacitors. Ike IS; Sigalas I; Iyuke SE Phys Chem Chem Phys; 2016 Oct; 18(41):28626-28647. PubMed ID: 27711688 [TBL] [Abstract][Full Text] [Related]
52. Realization of an Asymmetric Non-Aqueous Redox Flow Battery through Molecular Design to Minimize Active Species Crossover and Decomposition. Shrestha A; Hendriks KH; Sigman MS; Minteer SD; Sanford MS Chemistry; 2020 Apr; 26(24):5369-5373. PubMed ID: 32049389 [TBL] [Abstract][Full Text] [Related]
53. A π-Conjugation Extended Viologen as a Two-Electron Storage Anolyte for Total Organic Aqueous Redox Flow Batteries. Luo J; Hu B; Debruler C; Liu TL Angew Chem Int Ed Engl; 2018 Jan; 57(1):231-235. PubMed ID: 29181865 [TBL] [Abstract][Full Text] [Related]
54. Time Transient Electrochemical Monitoring of Tetraalkylammonium Polybromide Solid Particle Formation: Observation of Ionic Liquid-to-Solid Transitions. Choi Y; Hwang J; Kim KM; Jana S; Lee SU; Chae J; Chang J Anal Chem; 2019 May; 91(9):5850-5857. PubMed ID: 30942070 [TBL] [Abstract][Full Text] [Related]
55. Exfoliated Mesoporous 2D Covalent Organic Frameworks for High-Rate Electrochemical Double-Layer Capacitors. Yusran Y; Li H; Guan X; Li D; Tang L; Xue M; Zhuang Z; Yan Y; Valtchev V; Qiu S; Fang Q Adv Mater; 2020 Feb; 32(8):e1907289. PubMed ID: 31944440 [TBL] [Abstract][Full Text] [Related]
56. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage. Hu B; DeBruler C; Rhodes Z; Liu TL J Am Chem Soc; 2017 Jan; 139(3):1207-1214. PubMed ID: 27973765 [TBL] [Abstract][Full Text] [Related]
57. A pH-Neutral, Metal-Free Aqueous Organic Redox Flow Battery Employing an Ammonium Anthraquinone Anolyte. Hu B; Luo J; Hu M; Yuan B; Liu TL Angew Chem Int Ed Engl; 2019 Nov; 58(46):16629-16636. PubMed ID: 31381221 [TBL] [Abstract][Full Text] [Related]
58. High energy density electrolytes for H Küttinger M; Wlodarczyk JK; Daubner D; Fischer P; Tübke J RSC Adv; 2021 Jan; 11(9):5218-5229. PubMed ID: 35424436 [TBL] [Abstract][Full Text] [Related]
59. An Ultra-Low Self-Discharge Aqueous|Organic Membraneless Battery with Minimized Br Yang H; Lin S; Qu Y; Wang G; Xiang S; Liu F; Wang C; Tang H; Wang D; Wang Z; Liu X; Zhang Y; Wu Y Adv Sci (Weinh); 2024 Feb; 11(7):e2307780. PubMed ID: 38168899 [TBL] [Abstract][Full Text] [Related]
60. Sodium titanate nanotubes as negative electrode materials for sodium-ion capacitors. Yin J; Qi L; Wang H ACS Appl Mater Interfaces; 2012 May; 4(5):2762-8. PubMed ID: 22500466 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]