These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 28696675)
61. Sub-micrometer Novolac-Derived Carbon Beads for High Performance Supercapacitors and Redox Electrolyte Energy Storage. Krüner B; Lee J; Jäckel N; Tolosa A; Presser V ACS Appl Mater Interfaces; 2016 Apr; 8(14):9104-15. PubMed ID: 26996252 [TBL] [Abstract][Full Text] [Related]
62. A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Huang J; Sumpter BG; Meunier V Chemistry; 2008; 14(22):6614-26. PubMed ID: 18576455 [TBL] [Abstract][Full Text] [Related]
63. Symmetric Sodium-Ion Capacitor Based on Na Chen Z; Yuan T; Pu X; Yang H; Ai X; Xia Y; Cao Y ACS Appl Mater Interfaces; 2018 Apr; 10(14):11689-11698. PubMed ID: 29569890 [TBL] [Abstract][Full Text] [Related]
64. Self-discharge of electrochemical capacitors based on soluble or grafted quinone. Shul G; Bélanger D Phys Chem Chem Phys; 2016 Jul; 18(28):19137-45. PubMed ID: 27356866 [TBL] [Abstract][Full Text] [Related]
65. Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors. Mourad E; Coustan L; Lannelongue P; Zigah D; Mehdi A; Vioux A; Freunberger SA; Favier F; Fontaine O Nat Mater; 2017 Apr; 16(4):446-453. PubMed ID: 27893725 [TBL] [Abstract][Full Text] [Related]
66. A Zinc-Dual-Halogen Battery with a Molten Hydrate Electrolyte. Liu H; Chen CY; Yang H; Wang Y; Zou L; Wei YS; Jiang J; Guo J; Shi W; Xu Q; Cheng P Adv Mater; 2020 Nov; 32(46):e2004553. PubMed ID: 33048428 [TBL] [Abstract][Full Text] [Related]
67. Redox-Active Functional Electrolyte for High-Performance Seawater Batteries. Lee S; Cho IY; Kim D; Park NK; Park J; Kim Y; Kang SJ; Kim Y; Hong SY ChemSusChem; 2020 May; 13(9):2220-2224. PubMed ID: 32037724 [TBL] [Abstract][Full Text] [Related]
68. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Blanc F; Leskes M; Grey CP Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242 [TBL] [Abstract][Full Text] [Related]
69. Mini-Review on the Redox Additives in Aqueous Electrolyte for High Performance Supercapacitors. Qin W; Zhou N; Wu C; Xie M; Sun H; Guo Y; Pan L ACS Omega; 2020 Mar; 5(8):3801-3808. PubMed ID: 32149206 [TBL] [Abstract][Full Text] [Related]
70. Oxygen- and Nitrogen-Enriched 3D Porous Carbon for Supercapacitors of High Volumetric Capacity. Li J; Liu K; Gao X; Yao B; Huo K; Cheng Y; Cheng X; Chen D; Wang B; Sun W; Ding D; Liu M; Huang L ACS Appl Mater Interfaces; 2015 Nov; 7(44):24622-8. PubMed ID: 26477268 [TBL] [Abstract][Full Text] [Related]
71. Flexible Anion Microbatteries: Towards Construction of a Hybrid Battery-Capacitor Device. Silambarasan K; Joseph J ChemSusChem; 2018 Sep; 11(18):3081-3086. PubMed ID: 30079986 [TBL] [Abstract][Full Text] [Related]
72. Pyridyl group design in viologens for anolyte materials in organic redox flow batteries. Chen C; Zhang S; Zhu Y; Qian Y; Niu Z; Ye J; Zhao Y; Zhang X RSC Adv; 2018 May; 8(34):18762-18770. PubMed ID: 35539647 [TBL] [Abstract][Full Text] [Related]
73. Energy storage inspired by nature - ionic liquid iron-sulfur clusters as electrolytes for redox flow batteries. Modrzynski C; Burger P Dalton Trans; 2019 Feb; 48(6):1941-1946. PubMed ID: 30633269 [TBL] [Abstract][Full Text] [Related]
74. Designing Uniformly Layered FeTiO Liu L; Zhao Z; Hu Z; Lu X; Zhang S; Huang L; Zheng Y; Li H Front Chem; 2020; 8():371. PubMed ID: 32537450 [TBL] [Abstract][Full Text] [Related]
76. Investigation of Charge Transfer Kinetics at Carbon/Hydroquinone Interfaces for Redox-Active-Electrolyte Supercapacitors. Park J; Kumar V; Wang X; Lee PS; Kim W ACS Appl Mater Interfaces; 2017 Oct; 9(39):33728-33734. PubMed ID: 28895724 [TBL] [Abstract][Full Text] [Related]
77. Superior Electrocatalytic Activity of a Robust Carbon-Felt Electrode with Oxygen-Rich Phosphate Groups for All-Vanadium Redox Flow Batteries. Kim KJ; Lee HS; Kim J; Park MS; Kim JH; Kim YJ; Skyllas-Kazacos M ChemSusChem; 2016 Jun; 9(11):1329-38. PubMed ID: 27106165 [TBL] [Abstract][Full Text] [Related]
78. High-energy redox-flow batteries with hybrid metal foam electrodes. Park MS; Lee NJ; Lee SW; Kim KJ; Oh DJ; Kim YJ ACS Appl Mater Interfaces; 2014 Jul; 6(13):10729-35. PubMed ID: 24906030 [TBL] [Abstract][Full Text] [Related]
79. Cobalt and Vanadium Trimetaphosphate Polyanions: Synthesis, Characterization, and Electrochemical Evaluation for Non-aqueous Redox-Flow Battery Applications. Stauber JM; Zhang S; Gvozdik N; Jiang Y; Avena L; Stevenson KJ; Cummins CC J Am Chem Soc; 2018 Jan; 140(2):538-541. PubMed ID: 29232132 [TBL] [Abstract][Full Text] [Related]
80. Systematic Study of Quaternary Ammonium Cations for Bromine Sequestering Application in High Energy Density Electrolytes for Hydrogen Bromine Redox Flow Batteries. Küttinger M; Loichet Torres PA; Meyer E; Fischer P; Tübke J Molecules; 2021 May; 26(9):. PubMed ID: 34066418 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]