These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 28696746)

  • 21. Refractive-index sensitivities of hybrid surface-plasmon resonances for a core-shell circular silver nanotube sensor.
    Velichko EA; Nosich AI
    Opt Lett; 2013 Dec; 38(23):4978-81. PubMed ID: 24281487
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable Hyperbolic Metamaterials Based on Self-Assembled Carbon Nanotubes.
    Roberts JA; Yu SJ; Ho PH; Schoeche S; Falk AL; Fan JA
    Nano Lett; 2019 May; 19(5):3131-3137. PubMed ID: 30950280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Plasmon-phonon coupling in large-area graphene dot and antidot arrays fabricated by nanosphere lithography.
    Zhu X; Wang W; Yan W; Larsen MB; Bøggild P; Pedersen TG; Xiao S; Zi J; Mortensen NA
    Nano Lett; 2014 May; 14(5):2907-13. PubMed ID: 24707792
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tunable plasmon resonances in a metallic nanotip-film system.
    Uetsuki K; Verma P; Nordlander P; Kawata S
    Nanoscale; 2012 Sep; 4(19):5931-5. PubMed ID: 22899297
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electronic and Optical Properties of Single Wall Carbon Nanotubes.
    Saito R; Nugraha ART; Hasdeo EH; Hung NT; Izumida W
    Top Curr Chem (Cham); 2017 Feb; 375(1):7. PubMed ID: 28032245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface plasmon dynamics in arrays of subwavelength holes: the role of optical interband transitions.
    Halté V; Benabbas A; Bigot JY
    Opt Express; 2008 Jul; 16(15):11611-7. PubMed ID: 18648482
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photocurrent in graphene harnessed by tunable intrinsic plasmons.
    Freitag M; Low T; Zhu W; Yan H; Xia F; Avouris P
    Nat Commun; 2013; 4():1951. PubMed ID: 23727714
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anomalous Dirac Plasmons in 1D Topological Electrides.
    Wang J; Sui X; Gao S; Duan W; Liu F; Huang B
    Phys Rev Lett; 2019 Nov; 123(20):206402. PubMed ID: 31809077
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Generation of spin currents by surface plasmon resonance.
    Uchida K; Adachi H; Kikuchi D; Ito S; Qiu Z; Maekawa S; Saitoh E
    Nat Commun; 2015 Jan; 6():5910. PubMed ID: 25569821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spaser made of graphene and carbon nanotubes.
    Rupasinghe C; Rukhlenko ID; Premaratne M
    ACS Nano; 2014 Mar; 8(3):2431-8. PubMed ID: 24559464
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural, electronic, optical and vibrational properties of nanoscale carbons and nanowires: a colloquial review.
    Cole MW; Crespi VH; Dresselhaus MS; Dresselhaus G; Fischer JE; Gutierrez HR; Kojima K; Mahan GD; Rao AM; Sofo JO; Tachibana M; Wako K; Xiong Q
    J Phys Condens Matter; 2010 Aug; 22(33):334201. PubMed ID: 21386491
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mie and Bragg plasmons in subwavelength silver semi-shells.
    Maaroof AI; Cortie MB; Harris N; Wieczorek L
    Small; 2008 Dec; 4(12):2292-9. PubMed ID: 19016499
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fano interference between localized plasmons and interface reflections.
    Svedendahl M; Käll M
    ACS Nano; 2012 Aug; 6(8):7533-9. PubMed ID: 22808902
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The coherence effect of surface plasmons on optical transmission in silver subwavelength hole arrays.
    Tang ZH; Wang Z; Zhang ZJ; Peng RW; Wu X; Li D; Sun WH; Gao F; Wang M
    J Nanosci Nanotechnol; 2009 Feb; 9(2):985-9. PubMed ID: 19441437
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fano resonances in the midinfrared spectra of single-walled carbon nanotubes.
    Lapointe F; Gaufrès E; Tremblay I; Tang NY; Martel R; Desjardins P
    Phys Rev Lett; 2012 Aug; 109(9):097402. PubMed ID: 23002881
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Universal nature of collective plasmonic excitations in finite 1D carbon-based nanostructures.
    Polizzi E; Yngvesson SK
    Nanotechnology; 2015 Aug; 26(32):325201. PubMed ID: 26202877
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ultraefficient Coupling of a Quantum Emitter to the Tunable Guided Plasmons of a Carbon Nanotube.
    Martín-Moreno L; de Abajo FJ; García-Vidal FJ
    Phys Rev Lett; 2015 Oct; 115(17):173601. PubMed ID: 26551115
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Infrared Light-Emitting Devices from Antenna-Coupled Luttinger Liquid Plasmons In Carbon Nanotubes.
    Yoo S; Zhao S; Wang F
    Phys Rev Lett; 2021 Dec; 127(25):257702. PubMed ID: 35029454
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Plasmon-Phonon Coupling.
    Cui Y; Lauchner A; Manjavacas A; Garcı A de Abajo FJ; Halas NJ; Nordlander P
    Nano Lett; 2016 Oct; 16(10):6390-6395. PubMed ID: 27668447
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems.
    Bergman DJ; Stockman MI
    Phys Rev Lett; 2003 Jan; 90(2):027402. PubMed ID: 12570577
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.